Abstract
Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in a methane/air academic burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments
Original language | English |
---|---|
Pages (from-to) | 121-130 |
Journal | Comptes rendus mécanique |
Volume | 341 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- METIS-295550
- IR-85351