TY - JOUR
T1 - Leveraging Expertise in Thermal Catalysis to Understand Plasma Catalysis
AU - Lefferts, Leon
N1 - Publisher Copyright:
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
PY - 2024/3/4
Y1 - 2024/3/4
N2 - Best practices in testing heterogeneous catalysts are translated to plasma-catalytic experiments. Independent determination of plasma-catalytic and plasma-chemical contributions is essential. Non-porous catalyst particles are preferred because active sites inside sub-micron pores cannot contribute. Temperature variation is needed to determine kinetics, despite the complexity of thermal effects in plasma. Rigorous checks on catalyst deactivation and mass balance are needed. Plasma enhanced reversed reactions should be minimized by keeping conversion low and far from thermodynamic equilibrium, preventing underestimation of the rate of forward reaction. In contrast, plasma-catalytic studies often aim at conversions surpassing thermodynamic equilibrium, not obtaining any information on kinetics. Calculation of catalyst activity per active sites (turn-over-frequency) requires also appropriate characterization to determine the number of active sites.The relationship between kinetics and thermodynamics for plasma-catalysis is discussed using endothermic decomposition of CO2 and exothermic synthesis of ammonia from N2 and H2 as examples. Assuming Langmuir–Hinshelwood and Eley-Rideal mechanisms, the effect of excitation of reactant molecules on activation barriers and surface coverages are discussed, influencing reaction rates. The consequences of reversed reactions are considered. Plasma-catalysis with catalysts applied for thermal catalysis at much higher temperature should be avoided, as adsorbed species are bonded too strongly resulting in low rates.
AB - Best practices in testing heterogeneous catalysts are translated to plasma-catalytic experiments. Independent determination of plasma-catalytic and plasma-chemical contributions is essential. Non-porous catalyst particles are preferred because active sites inside sub-micron pores cannot contribute. Temperature variation is needed to determine kinetics, despite the complexity of thermal effects in plasma. Rigorous checks on catalyst deactivation and mass balance are needed. Plasma enhanced reversed reactions should be minimized by keeping conversion low and far from thermodynamic equilibrium, preventing underestimation of the rate of forward reaction. In contrast, plasma-catalytic studies often aim at conversions surpassing thermodynamic equilibrium, not obtaining any information on kinetics. Calculation of catalyst activity per active sites (turn-over-frequency) requires also appropriate characterization to determine the number of active sites.The relationship between kinetics and thermodynamics for plasma-catalysis is discussed using endothermic decomposition of CO2 and exothermic synthesis of ammonia from N2 and H2 as examples. Assuming Langmuir–Hinshelwood and Eley-Rideal mechanisms, the effect of excitation of reactant molecules on activation barriers and surface coverages are discussed, influencing reaction rates. The consequences of reversed reactions are considered. Plasma-catalysis with catalysts applied for thermal catalysis at much higher temperature should be avoided, as adsorbed species are bonded too strongly resulting in low rates.
KW - UT-Hybrid-D
KW - Kinetics
KW - Mechanism
KW - Plasma Catalysis
KW - Thermodynamics
KW - Experimental Methods
UR - http://www.scopus.com/inward/record.url?scp=85183655362&partnerID=8YFLogxK
U2 - 10.1002/anie.202305322
DO - 10.1002/anie.202305322
M3 - Article
C2 - 38279548
AN - SCOPUS:85183655362
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 10
M1 - e202305322
ER -