TY - JOUR
T1 - LiDAR reveals a preference for intermediate visibility by a forest-dwelling ungulate species
AU - Zong, Xin
AU - Wang, Tiejun
AU - Skidmore, A.K.
AU - Heurich, Marco
N1 - Funding Information:
The work of the first author was sponsored by the China Scholarship Council (grant number 201704910852). The authors are thankful for the support of the European Research Council (European Commission BIOSPACE—Monitoring Biodiversity from Space project; grant agreement 834709, H2020‐EU.1.1.) and the ‘Data Pool Initiative’ of the Bohemian Forest Ecosystem.
Publisher Copyright:
© 2022 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
PY - 2023/7
Y1 - 2023/7
N2 - Visibility (viewshed) plays a significant and diverse role in animals' behaviour and fitness. Understanding how visibility influences animal behaviour requires the measurement of habitat visibility at spatial scales commensurate to individual animal choices. However, measuring habitat visibility at a fine spatial scale over a landscape is a challenge, particularly in highly heterogeneous landscapes (e.g. forests). As a result, our ability to model the influence of fine-scale visibility on animal behaviour has been impeded or limited. In this study, we demonstrate the application of the concept of three-dimensional (3D) cumulative viewshed in the study of animal spatial behaviour at a landscape level. Specifically, we employed a newly described approach that combines terrestrial and airborne light detection and ranging (LiDAR) to measure fine-scale habitat visibility (3D cumulative viewshed) on a continuous scale in forested landscapes. We applied the LiDAR-derived visibility to investigate how visibility in forests affects the summer habitat selection and the movement of 20 GPS-collared female red deer Cervus elaphus in a temperate forest in Germany. We used integrated step selection analysis to determine whether red deer show any preference for fine-scale habitat visibility and whether visibility is related to the rate of movement of red deer. We found that red deer selected intermediate habitat visibility. Their preferred level of visibility during the day was substantially lower than that of night and twilight, whereas the preference was not significantly different between night and twilight. In addition, red deer moved faster in high-visibility areas, possibly mainly to avoid predation and anthropogenic risk. Furthermore, red deer moved most rapidly between locations in the twilight. For the first time, the preference for intermediate habitat visibility and the adaption of movement rate to fine-scale visibility by a forest-dwelling ungulate species at a landscape scale was revealed. The LiDAR technique used in this study offers fine-scale habitat visibility at the landscape level in forest ecosystems, which would be of broader interest in the fields of animal ecology and behaviour.
AB - Visibility (viewshed) plays a significant and diverse role in animals' behaviour and fitness. Understanding how visibility influences animal behaviour requires the measurement of habitat visibility at spatial scales commensurate to individual animal choices. However, measuring habitat visibility at a fine spatial scale over a landscape is a challenge, particularly in highly heterogeneous landscapes (e.g. forests). As a result, our ability to model the influence of fine-scale visibility on animal behaviour has been impeded or limited. In this study, we demonstrate the application of the concept of three-dimensional (3D) cumulative viewshed in the study of animal spatial behaviour at a landscape level. Specifically, we employed a newly described approach that combines terrestrial and airborne light detection and ranging (LiDAR) to measure fine-scale habitat visibility (3D cumulative viewshed) on a continuous scale in forested landscapes. We applied the LiDAR-derived visibility to investigate how visibility in forests affects the summer habitat selection and the movement of 20 GPS-collared female red deer Cervus elaphus in a temperate forest in Germany. We used integrated step selection analysis to determine whether red deer show any preference for fine-scale habitat visibility and whether visibility is related to the rate of movement of red deer. We found that red deer selected intermediate habitat visibility. Their preferred level of visibility during the day was substantially lower than that of night and twilight, whereas the preference was not significantly different between night and twilight. In addition, red deer moved faster in high-visibility areas, possibly mainly to avoid predation and anthropogenic risk. Furthermore, red deer moved most rapidly between locations in the twilight. For the first time, the preference for intermediate habitat visibility and the adaption of movement rate to fine-scale visibility by a forest-dwelling ungulate species at a landscape scale was revealed. The LiDAR technique used in this study offers fine-scale habitat visibility at the landscape level in forest ecosystems, which would be of broader interest in the fields of animal ecology and behaviour.
KW - UT-Hybrid-D
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-HYBRID
U2 - 10.1111/1365-2656.13847
DO - 10.1111/1365-2656.13847
M3 - Article
SN - 0021-8790
VL - 92
SP - 1306
EP - 1319
JO - Journal of animal ecology
JF - Journal of animal ecology
IS - 7
ER -