TY - JOUR
T1 - Liposomal prednisolone inhibits tumor growth in a spontaneous mouse mammary carcinoma model
AU - Deshantri, A.K.
AU - Kooijmans, S.A.A.
AU - Kuijpers, S.A.
AU - Coimbra, M.
AU - Hoeppener, Astrid
AU - Storm, Gerrit
AU - Fens, M.H.A.M.
AU - Schiffelers, Raymond M.
PY - 2016
Y1 - 2016
N2 - Cancers are abundantly infiltrated by inflammatory cells that are modulated by tumor cells to secrete mediators fostering tumor cell survival and proliferation. Therefore, agents that interfere with inflammatory signaling molecules or specific immune cell populations have been investigated as anticancer drugs.
Corticosteroids are highly potent anti-inflammatory drugs, whose activity is intensified when targeted by nanocarrier systems. Liposome-targeted corticosteroids have been shown to inhibit tumor growth in different syngeneic murine tumor models as well as human xenograft mouse models, which is attributed to a switch in the tumor microenvironment from a pro-inflammatory to an anti-inflammatory state. Despite the recognized value of implantation tumor models in preclinical research, the “acute” inflammation induced by inoculation of tumor cells together with the exponential tumor growth in a relatively short period of time does not resemble slow progressive human disease that develops in situ. Therefore, in this study, the antitumor effect of liposomal corticosteroids was investigated in a clinically more relevant setting of transgenic mice developing spontaneous breast carcinomas.
Here we show that liposomal prednisolone phosphate inhibits the growth of spontaneous breast carcinoma. Interestingly, the liposomal prednisolone was significantly more active than free drug. At 72 h after injection of the liposomal formulation, 3 μg prednisolone per gram of tumor tissue was recovered whereas no drug could be recovered after injection of the free agent. This indicates that, despite etiological and morphological differences between implanted and spontaneous tumor models, EPR-mediated accumulation of drug occurs to similar extent in this spontaneous mammary carcinoma model as in the syngeneic tumor models.
Finally, we analyzed miRNA profiles in the MMTV/neu model and showed that the top 10 of miRNAs in the MMTV/neu tumor consisted of miRNAs with a known involvement in breast carcinoma proliferation and metastasis. The only exception was the appearance of miR-146b, a known inflammation-regulating miRNA species, after liposomal prednisolone treatment.
AB - Cancers are abundantly infiltrated by inflammatory cells that are modulated by tumor cells to secrete mediators fostering tumor cell survival and proliferation. Therefore, agents that interfere with inflammatory signaling molecules or specific immune cell populations have been investigated as anticancer drugs.
Corticosteroids are highly potent anti-inflammatory drugs, whose activity is intensified when targeted by nanocarrier systems. Liposome-targeted corticosteroids have been shown to inhibit tumor growth in different syngeneic murine tumor models as well as human xenograft mouse models, which is attributed to a switch in the tumor microenvironment from a pro-inflammatory to an anti-inflammatory state. Despite the recognized value of implantation tumor models in preclinical research, the “acute” inflammation induced by inoculation of tumor cells together with the exponential tumor growth in a relatively short period of time does not resemble slow progressive human disease that develops in situ. Therefore, in this study, the antitumor effect of liposomal corticosteroids was investigated in a clinically more relevant setting of transgenic mice developing spontaneous breast carcinomas.
Here we show that liposomal prednisolone phosphate inhibits the growth of spontaneous breast carcinoma. Interestingly, the liposomal prednisolone was significantly more active than free drug. At 72 h after injection of the liposomal formulation, 3 μg prednisolone per gram of tumor tissue was recovered whereas no drug could be recovered after injection of the free agent. This indicates that, despite etiological and morphological differences between implanted and spontaneous tumor models, EPR-mediated accumulation of drug occurs to similar extent in this spontaneous mammary carcinoma model as in the syngeneic tumor models.
Finally, we analyzed miRNA profiles in the MMTV/neu model and showed that the top 10 of miRNAs in the MMTV/neu tumor consisted of miRNAs with a known involvement in breast carcinoma proliferation and metastasis. The only exception was the appearance of miR-146b, a known inflammation-regulating miRNA species, after liposomal prednisolone treatment.
KW - METIS-320735
KW - IR-103526
U2 - 10.1016/j.jconrel.2016.10.016
DO - 10.1016/j.jconrel.2016.10.016
M3 - Article
VL - 243
SP - 243
EP - 249
JO - Journal of controlled release
JF - Journal of controlled release
SN - 0168-3659
ER -