Long-term assessment of ecosystem services at ecological restoration sites using Landsat time series

T. Del Río-Mena*, L. Willemen, A. Vrieling, Andy Snoeys, A. Nelson

*Corresponding author for this work

Research output: Working paper

18 Downloads (Pure)

Abstract

Reversing ecological degradation through restoration activities is a key societal challenge of the upcoming decade. However, lack of evidence on the effectiveness of restoration interventions leads to inconsistent, delayed, or poorly informed statements of success, hindering the wise allocation of resources, representing a missed opportunity to learn from previous experiences. This study contributes to a better understanding of spatial and temporal dynamics of ecosystem services at ecological restoration sites. We developed a method using Landsat satellite images combined with a Before-After-Control-Impact (BACI) design, and applied this to an arid rural landscape, the Baviaanskloof in South Africa. Since 1990, various restoration projects have been implemented to halt and reverse degradation. We applied the BACI approach at pixel-level comparing the conditions of each intervened pixel (impact) with 20 similar control pixels. By evaluating the conditions before and after the intervention, we assessed the effectiveness of long-term restoration interventions distinguishing their impact from environmental temporal changes. The BACI approach was implemented with Landsat images that cover a 30-year period at a spatial resolution of 30 m. We evaluated the impact of three interventions (revegetation, livestock exclusion, and the combination of both) on three ecosystem services; forage provision, erosion prevention, and presence of iconic vegetation. We also evaluated whether terrain characteristics could partially explain the variation in impact of interventions. The resulting maps showed spatial patterns of positive and negative effects of interventions on ecosystem services. Intervention effectiveness differed between land cover vegetation clusters, terrain aspect, and soil parent material. Our method allows for spatially explicit quantification of the long-term restoration impact on ecosystem service supply, and for the detailed visualization of impact across an area. This pixel-level analysis is specifically suited for heterogeneous landscapes, where restoration impact not only varies between but also within restoration sites.
Original languageEnglish
PublisherCold Spring Harbor Laboratory Press
Pages1-28
Number of pages28
DOIs
Publication statusPublished - 16 Nov 2020

Publication series

NamebioRxiv
PublisherbioRxiv

Fingerprint

Dive into the research topics of 'Long-term assessment of ecosystem services at ecological restoration sites using Landsat time series'. Together they form a unique fingerprint.

Cite this