TY - JOUR
T1 - Long-term variations in actual evapotranspiration over the Tibetan Plateau
AU - Han, Cunbo
AU - Ma, Yaoming
AU - Wang, Binbin
AU - Zhong, Lei
AU - Ma, Weiqiang
AU - Chen, Xuelong
AU - Su, Zhongbo
N1 - Funding Information:
Financial support. This research has been supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (grant no. 2019QZKK0103), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA20060101), and the National Natural Science Foundation of China (grant nos. 91837208, 41705005, and 41830650).
Publisher Copyright:
© 2021 Author(s).
PY - 2021/7/19
Y1 - 2021/7/19
N2 - Actual terrestrial evapotranspiration (ETa) is a key parameter controlling land–atmosphere interaction processes and water cycle. However, spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Validation against data from six eddy-covariance monitoring sites yielded root-mean-square errors ranging from 9.3 to 14.5 mm per month and correlation coefficients exceeding 0.9. The domain mean of annual ETa on the TP decreased slightly (−1.45 mm yr−1, p<0.05) from 2001 to 2018. The annual ETa increased significantly at a rate of 2.62 mm yr−1 (p<0.05) in the eastern sector of the TP (long >90∘ E) but decreased significantly at a rate of −5.52 mm yr−1 (p<0.05) in the western sector of the TP (long <90∘ E). In addition, the decreases in annual ETa were pronounced in the spring and summer seasons, while almost no trends were detected in the autumn and winter seasons. The mean annual ETa during 2001–2018 and over the whole TP was 496±23 mm. Thus, the total evapotranspiration from the terrestrial surface of the TP was 1238.3±57.6 km3 yr−1. The estimated ETa product presented in this study is useful for an improved understanding of changes in energy and water cycle on the TP. The dataset is freely available at the Science Data Bank (https://doi.org/10.11922/sciencedb.t00000.00010; Han et al., 2020b) and at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Hydro.tpdc.270995, Han et al., 2020a).
AB - Actual terrestrial evapotranspiration (ETa) is a key parameter controlling land–atmosphere interaction processes and water cycle. However, spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Validation against data from six eddy-covariance monitoring sites yielded root-mean-square errors ranging from 9.3 to 14.5 mm per month and correlation coefficients exceeding 0.9. The domain mean of annual ETa on the TP decreased slightly (−1.45 mm yr−1, p<0.05) from 2001 to 2018. The annual ETa increased significantly at a rate of 2.62 mm yr−1 (p<0.05) in the eastern sector of the TP (long >90∘ E) but decreased significantly at a rate of −5.52 mm yr−1 (p<0.05) in the western sector of the TP (long <90∘ E). In addition, the decreases in annual ETa were pronounced in the spring and summer seasons, while almost no trends were detected in the autumn and winter seasons. The mean annual ETa during 2001–2018 and over the whole TP was 496±23 mm. Thus, the total evapotranspiration from the terrestrial surface of the TP was 1238.3±57.6 km3 yr−1. The estimated ETa product presented in this study is useful for an improved understanding of changes in energy and water cycle on the TP. The dataset is freely available at the Science Data Bank (https://doi.org/10.11922/sciencedb.t00000.00010; Han et al., 2020b) and at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Hydro.tpdc.270995, Han et al., 2020a).
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-GOLD
UR - https://ezproxy2.utwente.nl/login?url=https://library.itc.utwente.nl/login/2021/isi/su_long.pdf
U2 - 10.5194/essd-13-3513-2021
DO - 10.5194/essd-13-3513-2021
M3 - Article
VL - 13
SP - 3513
EP - 3524
JO - Earth system science data
JF - Earth system science data
SN - 1866-3508
IS - 7
ER -