TY - GEN
T1 - Low-temperature process steps for realization of non-volatile memory devices
AU - Brunets, I.
AU - Boogaard, A.
AU - Aarnink, Antonius A.I.
AU - Kovalgin, Alexeij Y.
AU - Wolters, Robertus A.M.
AU - Holleman, J.
AU - Schmitz, Jurriaan
PY - 2007/11/29
Y1 - 2007/11/29
N2 - In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the subsequent functional layers (e.g., gate oxide) can be done using CVD and ALD reactors in a cluster tool. We show that a high nanocrystal density (Si-NC), required for a good functionality of the memory device, can be obtained by using disilane (Si2H6) or trisilane (Si3H8, known as Silcore®) as precursors for LPCVD instead of silane, at a deposition temperature of 325 °C. The nanocrystals are encapsulated with an ALD-Al2O3 layer (deposited at 300 °C), which serves as oxidation barrier. The passivation of the realized structure is done with an ALD-TiN layer deposited at 425 °C.
In this work, we realized Al/TiN/Al2O3/Si-NC/SiO2/Si(100) multilayer floating-gate structures, where the crystallized amorphous silicon film was for the time being replaced by a mono-crystalline silicon wafer, and the gate oxide was thermally grown instead of a low-temperature PECVD oxide. The structures were characterized in terms of their performance as memory cells. In addition, the feasibility to use laser crystallization for improving the amorphous silicon films (prior to the gate oxide deposition) was explored.
AB - In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the subsequent functional layers (e.g., gate oxide) can be done using CVD and ALD reactors in a cluster tool. We show that a high nanocrystal density (Si-NC), required for a good functionality of the memory device, can be obtained by using disilane (Si2H6) or trisilane (Si3H8, known as Silcore®) as precursors for LPCVD instead of silane, at a deposition temperature of 325 °C. The nanocrystals are encapsulated with an ALD-Al2O3 layer (deposited at 300 °C), which serves as oxidation barrier. The passivation of the realized structure is done with an ALD-TiN layer deposited at 425 °C.
In this work, we realized Al/TiN/Al2O3/Si-NC/SiO2/Si(100) multilayer floating-gate structures, where the crystallized amorphous silicon film was for the time being replaced by a mono-crystalline silicon wafer, and the gate oxide was thermally grown instead of a low-temperature PECVD oxide. The structures were characterized in terms of their performance as memory cells. In addition, the feasibility to use laser crystallization for improving the amorphous silicon films (prior to the gate oxide deposition) was explored.
KW - SC-ICF: Integrated Circuit Fabrication
KW - IR-64576
KW - METIS-245939
KW - EWI-11730
M3 - Conference contribution
SN - 978-90-73461-49-9
SP - 504
EP - 508
BT - 10th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors (SAFE)
PB - STW
CY - Utrecht, The Netherlands
T2 - 10th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, SAFE 2007
Y2 - 29 November 2007 through 30 November 2007
ER -