Lubrication and frictional analysis of cam-roller follower mechanisms

Shivam S. Alakhramsing (Corresponding Author), M.B. de Rooij, D.J. Schipper, M. van Drogen

    Research output: Contribution to journalArticleAcademicpeer-review

    6 Citations (Scopus)
    552 Downloads (Pure)

    Abstract

    In this work, a full numerical solution to the cam–roller follower-lubricated contact is provided. The general framework of this model is based on a model describing the kinematics, a finite length line contact isothermal-EHL model for the cam–roller contact and a semi-analytical lubrication model for the roller–pin bearing. These models are interlinked via an improved roller–pin friction model. For the numerical study, a cam–roller follower pair, as part of the fuel injection system in Diesel engines, was analyzed. The results, including the evolution of power losses, minimum film thickness and maximum pressures, are compared with analytical solutions corresponding to infinite line contact models. The main findings of this work are that for accurate prediction of crucial performance indicators such as minimum film thickness, maximum pressure and power losses a finite length line contact analysis is necessary due to non-typical EHL characteristics of the pressure and film thickness distributions. Furthermore, due to the high contact forces associated with cam–roller pairs as part of fuel injection units, rolling friction is the dominant power loss contributor as roller slippage appears to be negligible. Finally, the influence of the different roller axial surface profiles on minimum film thickness, maximum pressure and power loss is shown to be significant. In fact, due to larger contact area, the maximum pressure can be reduced and the minimum film thickness can be increased significantly, however, at the cost of higher power losses.
    Original languageEnglish
    Pages (from-to)347-363
    Number of pages17
    JournalProceedings of the Institution of Mechanical Engineers. Part J: Journal of engineering tribology
    Volume232
    Issue number3
    DOIs
    Publication statusPublished - 1 Mar 2018

    Keywords

    • EHL
    • cam–roller
    • finite line contacts
    • roller slippage
    • cam-roller

    Fingerprint Dive into the research topics of 'Lubrication and frictional analysis of cam-roller follower mechanisms'. Together they form a unique fingerprint.

    Cite this