TY - JOUR
T1 - Macrophages protect against loss of adipose tissue during cancer cachexia
AU - Erdem, Merve
AU - Möckel, Diana
AU - Jumpertz, Sandra
AU - John, Cathleen
AU - Fragoulis, Athanassios
AU - Rudolph, Ines
AU - Wulfmeier, Johanna
AU - Springer, Jochen
AU - Horn, Henrike
AU - Koch, Marco
AU - Lurje, Georg
AU - Lammers, Twan
AU - Olde Damink, Steven
AU - van der Kroft, Gregory
AU - Gremse, Felix
AU - Cramer, Thorsten
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Background: Cancer cachexia represents a central obstacle in medical oncology as it is associated with poor therapy response and reduced overall survival. Systemic inflammation is considered to be a key driver of cancer cachexia; however, clinical studies with anti-inflammatory drugs failed to show distinct cachexia-inhibiting effects. To address this contradiction, we investigated the functional importance of innate immune cells for hepatocellular carcinoma (HCC)-associated cachexia. Methods: A transgenic HCC mouse model was intercrossed with mice harbouring a defect in myeloid cell-mediated inflammation. Body composition of mice was analysed via nuclear magnetic resonance spectroscopy and microcomputed tomography. Quantitative PCR was used to determine adipose tissue browning and polarization of adipose tissue macrophages. The activation state of distinct areas of the hypothalamus was analysed via immunofluorescence. Multispectral immunofluorescence imaging and immunoblot were applied to characterize sympathetic neurons and macrophages in visceral adipose tissue. Quantification of pro-inflammatory cytokines in mouse serum was performed with a multiplex immunoassay. Visceral adipose tissue of HCC patients was quantified via the L3 index of computed tomography scans obtained during routine clinical care. Results: We identified robust cachexia in the HCC mouse model as evidenced by a marked loss of visceral fat and lean mass. Computed tomography-based analyses demonstrated that a subgroup of human HCC patients displays reduced visceral fat mass, complementing the murine data. While the myeloid cell-mediated inflammation defect resulted in reduced expression of pro-inflammatory cytokines in the serum of HCC-bearing mice, this unexpectedly did not translate into diminished but rather enhanced cachexia-associated fat loss. Defective myeloid cell-mediated inflammation was associated with decreased macrophage abundance in visceral adipose tissue, suggesting a role for local macrophages in the regulation of cancer-induced fat loss. Conclusions: Myeloid cell-mediated inflammation displays a rather unexpected beneficial function in a murine HCC model. These results demonstrate that immune cells are capable of protecting the host against cancer-induced tissue wasting, adding a further layer of complexity to the pathogenesis of cachexia and providing a potential explanation for the contradictory results of clinical studies with anti-inflammatory drugs.
AB - Background: Cancer cachexia represents a central obstacle in medical oncology as it is associated with poor therapy response and reduced overall survival. Systemic inflammation is considered to be a key driver of cancer cachexia; however, clinical studies with anti-inflammatory drugs failed to show distinct cachexia-inhibiting effects. To address this contradiction, we investigated the functional importance of innate immune cells for hepatocellular carcinoma (HCC)-associated cachexia. Methods: A transgenic HCC mouse model was intercrossed with mice harbouring a defect in myeloid cell-mediated inflammation. Body composition of mice was analysed via nuclear magnetic resonance spectroscopy and microcomputed tomography. Quantitative PCR was used to determine adipose tissue browning and polarization of adipose tissue macrophages. The activation state of distinct areas of the hypothalamus was analysed via immunofluorescence. Multispectral immunofluorescence imaging and immunoblot were applied to characterize sympathetic neurons and macrophages in visceral adipose tissue. Quantification of pro-inflammatory cytokines in mouse serum was performed with a multiplex immunoassay. Visceral adipose tissue of HCC patients was quantified via the L3 index of computed tomography scans obtained during routine clinical care. Results: We identified robust cachexia in the HCC mouse model as evidenced by a marked loss of visceral fat and lean mass. Computed tomography-based analyses demonstrated that a subgroup of human HCC patients displays reduced visceral fat mass, complementing the murine data. While the myeloid cell-mediated inflammation defect resulted in reduced expression of pro-inflammatory cytokines in the serum of HCC-bearing mice, this unexpectedly did not translate into diminished but rather enhanced cachexia-associated fat loss. Defective myeloid cell-mediated inflammation was associated with decreased macrophage abundance in visceral adipose tissue, suggesting a role for local macrophages in the regulation of cancer-induced fat loss. Conclusions: Myeloid cell-mediated inflammation displays a rather unexpected beneficial function in a murine HCC model. These results demonstrate that immune cells are capable of protecting the host against cancer-induced tissue wasting, adding a further layer of complexity to the pathogenesis of cachexia and providing a potential explanation for the contradictory results of clinical studies with anti-inflammatory drugs.
KW - Cancer-associated cachexia
KW - Hepatocellular carcinoma
KW - HIF-1α
KW - Macrophages
KW - Visceral adipose tissue
UR - http://www.scopus.com/inward/record.url?scp=85069808356&partnerID=8YFLogxK
U2 - 10.1002/jcsm.12450
DO - 10.1002/jcsm.12450
M3 - Article
C2 - 31318182
AN - SCOPUS:85069808356
SN - 2190-5991
VL - 10
SP - 1128
EP - 1142
JO - Journal of Cachexia, Sarcopenia and Muscle
JF - Journal of Cachexia, Sarcopenia and Muscle
IS - 5
ER -