Abstract
This work addresses the magnetic-based control of a helical robot and the mitigation of the magnetic forces on its dipole moment during radial steering using rotating permanent magnets. A magnetic system with two synchronized permanent magnets that rotate quasistatically is used to move the helical robot (length and diameter of 12.5 mm and 4 mm, respectively). We experimentally demonstrate that using two synchronized permanent magnets for radial steering of a helical robot achieves higher motion stability, as opposed to propulsion using single rotating dipole field. The two synchronized dipole fields decrease the lateral oscillation (average peak-to-peak amplitude) of the helical robot by 37%, compared to the radial steering using a single dipole field at angular velocity of 31 rad/s. We also show that driving the helical robot using two synchronized rotating magnets achieves average swimming speed of 2.1 mm/s, whereas the single rotating dipole field achieves average swimming speed of 0.4 mm/s at angular velocity of 31 rad/s for the rotating permanent magnets. The proposed configuration of the helical propulsion allows us to decrease the magnetic forces that could cause tissue damage or potential trauma for in vivo applications.
Original language | English |
---|---|
Title of host publication | 2014 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014 |
Editors | Raffaella Carloni, Lorenzo Masia, Jose Maria Sabater-Navarro, Marko Ackermann, Sunil Agrawal, Arash Ajoudani, Panagiotis Artemiadis, Matteo Bianchi, Antonio Padilha Lanari Bo, Maura Casadio, Kevin Cleary, Ashish Deshpande, Domenico Formica, Matteo Fumagalli, Nicolas Garcia-Aracil, Sasha Blue Godfrey, Islam S.M. Khalil, Olivier Lambercy, Rui C. V. Loureiro, Leonardo Mattos, Victor Munoz, Hyung-Soon Park, Luis Eduardo Rodriguez Cheu, Roque Saltaren, Adriano A. G. Siqueira, Valentina Squeri, Arno H.A. Stienen, Nikolaos Tsagarakis, Herman Van der Kooij, Bram Vanderborght, Nicola Vitiello, Jose Zariffa, Loredana Zollo |
Publisher | IEEE |
Pages | 151-156 |
Number of pages | 6 |
ISBN (Electronic) | 9781479931262 |
DOIs | |
Publication status | Published - 30 Sept 2014 |
Event | 5th IEEE RAS & EMBS Interantional Conference on Biomedical Robotics and Biomechatronics, BioRob 2014 - Palacio das Convenções Anhembi, Sao Paulo, Brazil Duration: 12 Aug 2014 → 15 Aug 2014 Conference number: 5 |
Publication series
Name | Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics |
---|---|
ISSN (Print) | 2155-1774 |
Conference
Conference | 5th IEEE RAS & EMBS Interantional Conference on Biomedical Robotics and Biomechatronics, BioRob 2014 |
---|---|
Abbreviated title | BioRob |
Country/Territory | Brazil |
City | Sao Paulo |
Period | 12/08/14 → 15/08/14 |
Keywords
- 22/3 OA procedure