Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry

Robin B.J. Koldeweij, Bram F. Van Capelleveen, Detlef Lohse, Claas Willem Visser*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

26 Citations (Scopus)
93 Downloads (Pure)


When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance L(t) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop. L(t) is measured as a function of time, t, for various surface tension differences between the liquids and for various viscosities, revealing a power-law L(t) ∼ tα with a spreading exponent α ≈ 0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law L ∝ t3/4 that describes the dimensionless distance L as a function of the dimensionless time t reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems.

Original languageEnglish
Pages (from-to)8525-8531
Number of pages7
JournalSoft matter
Issue number42
Publication statusPublished - 14 Nov 2019


  • UT-Hybrid-D


Dive into the research topics of 'Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry'. Together they form a unique fingerprint.

Cite this