Marginal cost curves for water footprint reduction in irrigated agriculture: Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

Abebe D. Chukalla, Maarten S. Krol, Arjen Y. Hoekstra

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Scopus)
48 Downloads (Pure)

Abstract

Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3 ha-1 per season) or to a certain WF benchmark (expressed in m3 t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water consumption at negligible yield reduction while reducing the cost for irrigation water and the associated costs for energy and labour. Next, moving from no to organic mulching has a high cost-effectiveness, reducing the WF significantly at low cost. Finally, changing from sprinkler or furrow to drip or subsurface drip irrigation reduces the WF, but at a significant cost.

Original languageEnglish
Pages (from-to)3507-3524
Number of pages18
JournalHydrology and earth system sciences
Volume21
Issue number7
DOIs
Publication statusPublished - 13 Jul 2017

Fingerprint

water footprint
agriculture
crop
cost
irrigation
mulching
water consumption
labor
humid environment
silty clay loam
drip irrigation

Cite this

@article{3616bd309e60465185593bc214f12d7e,
title = "Marginal cost curves for water footprint reduction in irrigated agriculture: Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level",
abstract = "Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3 ha-1 per season) or to a certain WF benchmark (expressed in m3 t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water consumption at negligible yield reduction while reducing the cost for irrigation water and the associated costs for energy and labour. Next, moving from no to organic mulching has a high cost-effectiveness, reducing the WF significantly at low cost. Finally, changing from sprinkler or furrow to drip or subsurface drip irrigation reduces the WF, but at a significant cost.",
author = "Chukalla, {Abebe D.} and Krol, {Maarten S.} and Hoekstra, {Arjen Y.}",
year = "2017",
month = "7",
day = "13",
doi = "10.5194/hess-21-3507-2017",
language = "English",
volume = "21",
pages = "3507--3524",
journal = "Hydrology and earth system sciences",
issn = "1027-5606",
publisher = "Copernicus",
number = "7",

}

Marginal cost curves for water footprint reduction in irrigated agriculture : Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level. / Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

In: Hydrology and earth system sciences, Vol. 21, No. 7, 13.07.2017, p. 3507-3524.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Marginal cost curves for water footprint reduction in irrigated agriculture

T2 - Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

AU - Chukalla, Abebe D.

AU - Krol, Maarten S.

AU - Hoekstra, Arjen Y.

PY - 2017/7/13

Y1 - 2017/7/13

N2 - Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3 ha-1 per season) or to a certain WF benchmark (expressed in m3 t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water consumption at negligible yield reduction while reducing the cost for irrigation water and the associated costs for energy and labour. Next, moving from no to organic mulching has a high cost-effectiveness, reducing the WF significantly at low cost. Finally, changing from sprinkler or furrow to drip or subsurface drip irrigation reduces the WF, but at a significant cost.

AB - Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3 ha-1 per season) or to a certain WF benchmark (expressed in m3 t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water consumption at negligible yield reduction while reducing the cost for irrigation water and the associated costs for energy and labour. Next, moving from no to organic mulching has a high cost-effectiveness, reducing the WF significantly at low cost. Finally, changing from sprinkler or furrow to drip or subsurface drip irrigation reduces the WF, but at a significant cost.

UR - http://www.scopus.com/inward/record.url?scp=85024382556&partnerID=8YFLogxK

U2 - 10.5194/hess-21-3507-2017

DO - 10.5194/hess-21-3507-2017

M3 - Article

VL - 21

SP - 3507

EP - 3524

JO - Hydrology and earth system sciences

JF - Hydrology and earth system sciences

SN - 1027-5606

IS - 7

ER -