TY - JOUR
T1 - Mass Transport Determined Silica Nanowires Growth on Spherical Photonic Crystals with Nanostructure-Enabled Functionalities
AU - Wang, Juan
AU - Westerbeek, Eiko Y.
AU - van den Berg, Albert
AU - Segerink, Loes I.
AU - Shui, Lingling
AU - Eijkel, Jan C.T.
PY - 2020/6
Y1 - 2020/6
N2 - A robust and facile method has been developed to obtain directional growth of silica nanowires (SiO(2)NWs) by regulating mass transport of silicon monoxide (SiO) vapor. SiO(2)NWs are grown by vapor-liquid-solid (VLS) process on a surface of gold-covered spherical photonic crystals (SPCs) annealed at high temperature in an inert gas atmosphere in the vicinity of a SiO source. The SPCs are prepared from droplet confined colloidal self-assembly. SiO2NW morphology is governed by diffusion-reaction process of SiO vapor, whereby directional growth of SiO(2)NWs toward the low SiO concentration is obtained at locations with a high SiO concentration gradient, while random growth is observed at locations with a low SiO concentration gradient. Growth of NWs parallel to the supporting substrate surface is of great importance for various applications, and this is the first demonstration of surface-parallel growth by controlling mass transport. This controllable NW morphology enables production of SPCs covered with a large number of NWs, showing multilevel micro-nano feature and high specific surface area for potential applications in superwetting surfaces, oil/water separation, microreactors, and scaffolds. In addition, the controllable photonic stop band properties of this hybrid structure of SPCs enable the potential applications in photocatalysis, sensing, and light harvesting.
AB - A robust and facile method has been developed to obtain directional growth of silica nanowires (SiO(2)NWs) by regulating mass transport of silicon monoxide (SiO) vapor. SiO(2)NWs are grown by vapor-liquid-solid (VLS) process on a surface of gold-covered spherical photonic crystals (SPCs) annealed at high temperature in an inert gas atmosphere in the vicinity of a SiO source. The SPCs are prepared from droplet confined colloidal self-assembly. SiO2NW morphology is governed by diffusion-reaction process of SiO vapor, whereby directional growth of SiO(2)NWs toward the low SiO concentration is obtained at locations with a high SiO concentration gradient, while random growth is observed at locations with a low SiO concentration gradient. Growth of NWs parallel to the supporting substrate surface is of great importance for various applications, and this is the first demonstration of surface-parallel growth by controlling mass transport. This controllable NW morphology enables production of SPCs covered with a large number of NWs, showing multilevel micro-nano feature and high specific surface area for potential applications in superwetting surfaces, oil/water separation, microreactors, and scaffolds. In addition, the controllable photonic stop band properties of this hybrid structure of SPCs enable the potential applications in photocatalysis, sensing, and light harvesting.
U2 - 10.1002/smll.202001026
DO - 10.1002/smll.202001026
M3 - Article
VL - 16
JO - Small
JF - Small
SN - 1613-6810
IS - 24
M1 - 2001026
ER -