Measurement of ionospheric Total Electron Content using single‐frequency geostationary satellite observations

Chelsey Cooper*, Cathryn N. M. Mitchell, Corwin Wright, David R. Jackson, Ben A. Witvliet

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    3 Citations (Scopus)
    59 Downloads (Pure)

    Abstract

    The ionized upper portion of the atmosphere, the ionosphere, affects radio signals traveling between satellites and the ground. This degrades the performance of satellite navigation, surveillance, and communication systems. Techniques to measure and mitigate ionospheric effects and in particular to measure the total electron content (TEC) are therefore required. TEC is usually determined by analyzing the differential delay experienced by dual‐frequency signals. Here we demonstrate a technique which enables TEC to be derived using single‐frequency signals passing between geostationary satellites and terrestrial Global Positioning System (GPS) receivers. Geostationary satellites offer the key advantage that the raypaths are not moving and hence are easier to interpret than standard GPS TEC. Daily TEC time series are derived for three ground receivers from Europe over the year 2015. The technique is validated by correlation analysis both between pairs of ground receiver observations and between ground receivers and independent ionosonde observations. The correlation between pairs of receivers over a year shows good agreement. Good agreement was also seen between the TEC time series and ionosonde data, suggesting the technique is reliable and routinely produces realistic ionospheric information. The technique is not suitable for use on every GPS receiver type because drift in derived TEC values was observed for profiles calculated using receivers without links to highly stable clocks. The demonstrated technique has the potential to become a routine method to derive TEC, helping to map the ionosphere in real time and to mitigate ionospheric effects on radio systems.
    Original languageEnglish
    Article number1
    Pages (from-to)10-19
    Number of pages10
    JournalRadio Science
    Volume54
    Issue number1
    Early online date24 Oct 2018
    DOIs
    Publication statusPublished - 1 Jan 2019

      Fingerprint

    Keywords

    • UT-Hybrid-D
    • GPS
    • TEC
    • single frequency
    • ionosphere

    Cite this