Mental model mapping as a new tool to analyse the use of information in decision-making in integrated water management

Rien Kolkman, Matthijs Kok, A. van der Veen

Research output: Contribution to journalArticleAcademicpeer-review

80 Citations (Scopus)

Abstract

The solution of complex, unstructured problems is faced with policy controversy and dispute, unused and misused knowledge, project delay and failure, and decline of public trust in governmental decisions. Mental model mapping (also called concept mapping) is a technique to analyse these difficulties on a fundamental cognitive level, which can reveal experiences, perceptions, assumptions, knowledge and subjective beliefs of stakeholders, experts and other actors, and can stimulate communication and learning. This article presents the theoretical framework from which the use of mental model mapping techniques to analyse this type of problems emerges as a promising technique. The framework consists of the problem solving or policy design cycle, the knowledge production or modelling cycle, and the (computer) model as interface between the cycles. Literature attributes difficulties in the decision-making process to communication gaps between decision makers, stakeholders and scientists, and to the construction of knowledge within different paradigm groups that leads to different interpretation of the problem situation. Analysis of the decision-making process literature indicates that choices, which are made in all steps of the problem solving cycle, are based on an individual decision maker’s frame of perception. This frame, in turn, depends on the mental model residing in the mind of the individual. Thus we identify three levels of awareness on which the decision process can be analysed. This research focuses on the third level. Mental models can be elicited using mapping techniques. In this way, analysing an individual’s mental model can shed light on decision-making problems. The steps of the knowledge production cycle are, in the same manner, ultimately driven by the mental models of the scientist in a specific discipline. Remnants of this mental model can be found in the resulting computer model. The characteristics of unstructured problems (complexity, uncertainty and disagreement) can be positioned in the framework, as can the communities of knowledge construction and valuation involved in the solution of these problems (core science, applied science, and professional consultancy, and “post-normal” science). Mental model maps, this research hypothesises, are suitable to analyse the above aspects of the problem. This hypothesis is tested for the case of the Zwolle storm surch barrier. Analysis can aid integration between disciplines, participation of public stakeholders, and can stimulate learning processes. Mental model mapping is recommended to visualise the use of knowledge, to analyse difficulties in problem solving process, and to aid information transfer and communication. Mental model mapping help scientists to shape their new, post-normal responsibilities in a manner that complies with integrity when dealing with unstructured problems in complex, multifunctional systems.
Original languageUndefined
Pages (from-to)317-332
Number of pages16
JournalPhysics and Chemistry of the Earth
Volume30
Issue number4-5
DOIs
Publication statusPublished - 2005

Keywords

  • Complex unstructured problems
  • Concept mapping
  • Decision Making
  • Integrated assessment
  • IR-76645
  • Stakeholder frames
  • Post-normal science
  • METIS-224135
  • Mental model

Cite this