Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus

Inge J. Minten, Koos D.M. Wilke, Linda J.A. Hendriks, Jan C.M. van Hest, Roeland J.M. Nolte, Jeroen Johannes Lambertus Maria Cornelissen

Research output: Contribution to journalArticleAcademicpeer-review

24 Citations (Scopus)
8 Downloads (Pure)


The cowpea chlorotic mottle virus (CCMV) is a versatile building block for the construction of nanoreactors and functional materials. Upon RNA removal, the capsid can be reversibly assembled and disassembed by adjusting the pH. At pH 5.0 the capsid is in the native assembled conformation, while at pH 7.5 it disassembles into 90 capsid protein dimers. This special property enables the encapsulation of various molecules, such as protein and enzymes, but only at low pH. It is possible to stabilize the capsid at pH 7.5 by addition of negatively charged polyelectrolytes or negatively charged particles, but these methods all fill the interior of the capsid, leaving little or no space for other cargo molecules. This pH restriction therefore severely limits the range of enzymes that can be encapsulated, and hampers the investigation of the CCMV capsid as a nanoreactor for the study of enzymes in confined spaces. Herein, the interaction of N-terminal histidine-tag-modified capsid proteins with several metal ions is reported. Depending on the conditions used, nanometer-sized protein particles or capsidlike architectures are formed that are stable at pH 7.5. This metal-mediated stabilization methodology is employed to form stable capsids containing multiple proteins at pH 7.5, thereby greatly expanding the scope of the CCMV capsid as a nanoreactor.
Original languageEnglish
Pages (from-to)911-919
Number of pages8
Issue number7
Publication statusPublished - 2011


  • METIS-283467
  • IR-100013


Dive into the research topics of 'Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus'. Together they form a unique fingerprint.

Cite this