Metallopolymers as responsive materials: shifting equilibrium by tuning structure

Research output: ThesisPhD Thesis - Research UT, graduation UT

12 Downloads (Pure)

Abstract

This thesis describes the synthesis and characterization of a series of poly(ionic liquids) (PILs), or polyelectrolytes, from poly(ferrocenylsilane)s (PFSs) and their applications in responsive materials. PFSs are a fascinating class of metallopolymers, with a backbone consisting of alternating ferrocene and silane units. Redox-active ferrocene units provide unique redox-responsive properties, and the presence of silane groups offers great opportunities for post-polymerization modification. However, synthetic access to soluble, well-characterized metallopolymers with controllable properties, functionalities, and processability in aqueous media has proved to be a significant challenge. In this thesis, poly(ferrocenyl(3-iodopropyl)methylsilane) (PFS-I) was readily synthesized by transition metal-catalyzed ring-opening polymerization and employed as suitable precursor for post-polymerization modification because of the reactivity of its haloalkyl moieties, i.e. via the Menschutkin reaction or Strecker sulfite alkylation. Aiming at diversified functionalities that give rise to enhanced responsiveness to stimuli or even to multiple stimuli, a variety of substituents has been explored in this thesis. By tuning polymer structures and compositions, understanding the dynamic phase behavior, using different cross-linking chemistries, and applying external fields or constraints under appropriate processing conditions, a variety of applications are explored in this Thesis, including artificial muscles from electrospun hydrogel microfibers, porous membranes and micro-particles with breathing pores, an active plasmonic system from AuNP-hydrogel composites, carbon nanotube-hydrogel composites with bi-stable states and tunable resistance, an electrically switched smart window device, and symmetric redox flow batteries.
Original languageEnglish
Awarding Institution
  • University of Twente
Supervisors/Advisors
  • Vancso, Gyula J., Supervisor
  • Hempenius, Mark A., Advisor
Award date15 Mar 2017
Place of PublicationEnschede
Publisher
Print ISBNs978-90-365-4298-2
DOIs
Publication statusPublished - 15 Mar 2017

Fingerprint

Hydrogel
Silanes
Tuning
Polymerization
Ionic Liquids
Sulfites
Carbon Nanotubes
Ring opening polymerization
Alkylation
Composite materials
Phase behavior
Polyelectrolytes
Transition metals
Muscle
Polymers
Membranes
Processing
Chemical analysis
Oxidation-Reduction
ferrocene

Keywords

  • METIS-321802
  • IR-103786

Cite this

@phdthesis{495917b56c39476e92fe3c1679bbc749,
title = "Metallopolymers as responsive materials: shifting equilibrium by tuning structure",
abstract = "This thesis describes the synthesis and characterization of a series of poly(ionic liquids) (PILs), or polyelectrolytes, from poly(ferrocenylsilane)s (PFSs) and their applications in responsive materials. PFSs are a fascinating class of metallopolymers, with a backbone consisting of alternating ferrocene and silane units. Redox-active ferrocene units provide unique redox-responsive properties, and the presence of silane groups offers great opportunities for post-polymerization modification. However, synthetic access to soluble, well-characterized metallopolymers with controllable properties, functionalities, and processability in aqueous media has proved to be a significant challenge. In this thesis, poly(ferrocenyl(3-iodopropyl)methylsilane) (PFS-I) was readily synthesized by transition metal-catalyzed ring-opening polymerization and employed as suitable precursor for post-polymerization modification because of the reactivity of its haloalkyl moieties, i.e. via the Menschutkin reaction or Strecker sulfite alkylation. Aiming at diversified functionalities that give rise to enhanced responsiveness to stimuli or even to multiple stimuli, a variety of substituents has been explored in this thesis. By tuning polymer structures and compositions, understanding the dynamic phase behavior, using different cross-linking chemistries, and applying external fields or constraints under appropriate processing conditions, a variety of applications are explored in this Thesis, including artificial muscles from electrospun hydrogel microfibers, porous membranes and micro-particles with breathing pores, an active plasmonic system from AuNP-hydrogel composites, carbon nanotube-hydrogel composites with bi-stable states and tunable resistance, an electrically switched smart window device, and symmetric redox flow batteries.",
keywords = "METIS-321802, IR-103786",
author = "Kaihuan Zhang",
note = "Cum laude gepromoveerd!",
year = "2017",
month = "3",
day = "15",
doi = "10.3990/1.9789036542982",
language = "English",
isbn = "978-90-365-4298-2",
publisher = "Universiteit Twente",
school = "University of Twente",

}

Metallopolymers as responsive materials : shifting equilibrium by tuning structure. / Zhang, Kaihuan.

Enschede : Universiteit Twente, 2017. 173 p.

Research output: ThesisPhD Thesis - Research UT, graduation UT

TY - THES

T1 - Metallopolymers as responsive materials

T2 - shifting equilibrium by tuning structure

AU - Zhang, Kaihuan

N1 - Cum laude gepromoveerd!

PY - 2017/3/15

Y1 - 2017/3/15

N2 - This thesis describes the synthesis and characterization of a series of poly(ionic liquids) (PILs), or polyelectrolytes, from poly(ferrocenylsilane)s (PFSs) and their applications in responsive materials. PFSs are a fascinating class of metallopolymers, with a backbone consisting of alternating ferrocene and silane units. Redox-active ferrocene units provide unique redox-responsive properties, and the presence of silane groups offers great opportunities for post-polymerization modification. However, synthetic access to soluble, well-characterized metallopolymers with controllable properties, functionalities, and processability in aqueous media has proved to be a significant challenge. In this thesis, poly(ferrocenyl(3-iodopropyl)methylsilane) (PFS-I) was readily synthesized by transition metal-catalyzed ring-opening polymerization and employed as suitable precursor for post-polymerization modification because of the reactivity of its haloalkyl moieties, i.e. via the Menschutkin reaction or Strecker sulfite alkylation. Aiming at diversified functionalities that give rise to enhanced responsiveness to stimuli or even to multiple stimuli, a variety of substituents has been explored in this thesis. By tuning polymer structures and compositions, understanding the dynamic phase behavior, using different cross-linking chemistries, and applying external fields or constraints under appropriate processing conditions, a variety of applications are explored in this Thesis, including artificial muscles from electrospun hydrogel microfibers, porous membranes and micro-particles with breathing pores, an active plasmonic system from AuNP-hydrogel composites, carbon nanotube-hydrogel composites with bi-stable states and tunable resistance, an electrically switched smart window device, and symmetric redox flow batteries.

AB - This thesis describes the synthesis and characterization of a series of poly(ionic liquids) (PILs), or polyelectrolytes, from poly(ferrocenylsilane)s (PFSs) and their applications in responsive materials. PFSs are a fascinating class of metallopolymers, with a backbone consisting of alternating ferrocene and silane units. Redox-active ferrocene units provide unique redox-responsive properties, and the presence of silane groups offers great opportunities for post-polymerization modification. However, synthetic access to soluble, well-characterized metallopolymers with controllable properties, functionalities, and processability in aqueous media has proved to be a significant challenge. In this thesis, poly(ferrocenyl(3-iodopropyl)methylsilane) (PFS-I) was readily synthesized by transition metal-catalyzed ring-opening polymerization and employed as suitable precursor for post-polymerization modification because of the reactivity of its haloalkyl moieties, i.e. via the Menschutkin reaction or Strecker sulfite alkylation. Aiming at diversified functionalities that give rise to enhanced responsiveness to stimuli or even to multiple stimuli, a variety of substituents has been explored in this thesis. By tuning polymer structures and compositions, understanding the dynamic phase behavior, using different cross-linking chemistries, and applying external fields or constraints under appropriate processing conditions, a variety of applications are explored in this Thesis, including artificial muscles from electrospun hydrogel microfibers, porous membranes and micro-particles with breathing pores, an active plasmonic system from AuNP-hydrogel composites, carbon nanotube-hydrogel composites with bi-stable states and tunable resistance, an electrically switched smart window device, and symmetric redox flow batteries.

KW - METIS-321802

KW - IR-103786

U2 - 10.3990/1.9789036542982

DO - 10.3990/1.9789036542982

M3 - PhD Thesis - Research UT, graduation UT

SN - 978-90-365-4298-2

PB - Universiteit Twente

CY - Enschede

ER -