Abstract
Integrated coherent sources of ultra-violet (UV) light are essential for a wide range of applications, from ion-based quantum computing and optical clocks to gas sensing and microscopy. Conventional approaches that rely on UV gain materials face limitations in terms of wavelength versatility; in response frequency upconversion approaches that leverage various optical nonlinearities have received considerable attention. Among these, the integrated thin-film lithium niobate (TFLN) photonic platform shows particular promise owing to lithium niobate's transparency into the UV range, its strong second order nonlinearity, and high optical confinement. However, to date, the high propagation losses and lack of reliable techniques for consistent poling of cm-long waveguides with small poling periods have severely limited the utility of this platform. Here we present a sidewall poled lithium niobate (SPLN) waveguide approach that overcomes these obstacles and results in a more than two orders of magnitude increase in generated UV power compared to the state-of-the-art. Our UV SPLN waveguides feature record-low propagation losses of 2.3 dB/cm, complete domain inversion of the waveguide cross-section, and an optimum 50% duty cycle, resulting in a record-high normalized conversion efficiency of 5050 %W$^{-1}$cm$^{-2}$, and 4.2 mW of generated on-chip power at 390 nm wavelength. This advancement makes the TFLN photonic platform a viable option for high-quality on-chip UV generation, benefiting emerging applications.
Original language | English |
---|---|
Publisher | ArXiv.org |
DOIs | |
Publication status | Published - 21 Mar 2025 |
Keywords
- physics.optics
- physics.app-ph