Mixed time-dependent density-functional theory/classical photodynamics study of oxirane photochemistry

Enrico Tapavicza, Ivano Tavernelli, Ursula Rothlisberger, Claudia Filippi, Mark E. Casida

Research output: Contribution to journalArticleAcademicpeer-review

178 Citations (Scopus)


We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C2H4O→H2CH2O•. This is followed by hopping to the electronic ground state where hot (4000 K) dynamics leads to further reactions, namely, H2CH2O•→CH3CHO→H3+HO and CH4+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S0,S1) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system
Original languageUndefined
Pages (from-to)124108/1-124108/19
Number of pages19
JournalThe Journal of chemical physics
Issue number12
Publication statusPublished - 2008


  • IR-73794
  • METIS-254328

Cite this