TY - CHAP
T1 - Modeling Flow-Induced Crystallization
AU - Roozemond, Peter C.
AU - van Drongelen, Martin
AU - Peters, Gerrit W.M.
PY - 2017
Y1 - 2017
N2 - A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans’ orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s−1, pressures from 100 to 1,200 bar, shear temperatures from 130°C to 180°C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish
AB - A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans’ orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s−1, pressures from 100 to 1,200 bar, shear temperatures from 130°C to 180°C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish
U2 - 10.1007/12_2016_351
DO - 10.1007/12_2016_351
M3 - Chapter
SN - 9783319506838
T3 - Advances in polymer science
SP - 243
EP - 294
BT - Polymer Crystallization II: From Chain Microstructure to Processing
A2 - Auriemma, Finizia
A2 - Alfonso, Giovanni Carlo
A2 - de Rosa, Claudio
PB - Springer
ER -