Abstract
A new method for separation of molecules of different size is presented. The method is a useful addition to conventional separation methods which depend mainly on gel permeation chromatography using size exclusion. In the new method, hydrogel membranes are used which swelling level can be thermally controlled. In this study, a crosslinked poly(N-isopropylacrylamide¿co-butylmethacrylate 95:5mol%) membrane is used and three solutes of distinct molecular size: two dextrans with molecular weights of 150,000 and 4,400 g/mol respectively and uranine with a molecular weight of 376 g/mol. The swelling of the membranes as function of temperature was measured as well as the influence of the swelling level on the permeability of the three solutes. the influence of the swelling level and the solute size on the permeability was as expected from the free-volume theory. Based on these permeability phenomena, separation was performed in a continuous way by varying the membrane swelling at the appropriate time. A linear relationship between inverse membrane hydration and solute diffusion was found for uranine and dextran (MW=4,400), indicating the validity of the free-volume theory.
Original language | Undefined |
---|---|
Pages (from-to) | 283-294 |
Number of pages | 12 |
Journal | Journal of membrane science |
Volume | 64 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1991 |
Keywords
- METIS-105241
- IR-9595