TY - JOUR
T1 - Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards
AU - Tang, Chenxiao
AU - Liu, Xinlei
AU - Cai, Yinghua
AU - Van Westen, C.J.
AU - Yang, Yu
AU - Tang, Hai
AU - Yang, Chengzhang
AU - Tang, Chuan
PY - 2020/4/29
Y1 - 2020/4/29
N2 - Recovering from major earthquakes is a challenge, especially in mountainous environments where postearthquake hazards may cause substantial impacts for prolonged periods of time. Although such impacts were reported in the 1923 Great Kantō earthquake and the 1999 Chi-Chi earthquake, careless reconstruction in hazard-prone areas and consequently huge losses were witnessed following the 2008 Wenchuan earthquake in the Sichuan province of China, as several reconstructed settlements were severely damaged by mass movements and floods. In order to summarize experiences and identify problems in the reconstruction planning, a monitoring of one of the settlements, the town of Longchi, was carried out by image interpretation and field investigation. Seven inventories containing buildings, farmlands, roads and mitigation measures were made to study the dynamics of elements at risk and exposure over a period of 11 years. It was found that the total economic value of the newly reconstructed buildings was several times more than in the preearthquake situation in 2007, because of enormous governmental investment. Postseismic hazards were not sufficiently taken into consideration in the recovery planning before the catastrophic debris flow disaster in 2010. As a result, the direct economic loss from postseismic disasters was slightly more than the loss caused by the Wenchuan earthquake itself. The society showed an impact-adapt pattern, experiencing losses from disasters and then gaining resistance by abandoning buildings in hazard-prone areas and installing mitigation measures. The locations potentially exposed to postearthquake hazards were summarized, and a possible timetable for reconstruction was proposed. Problems might be encountered in hazard assessment, and possible solutions were discussed.
AB - Recovering from major earthquakes is a challenge, especially in mountainous environments where postearthquake hazards may cause substantial impacts for prolonged periods of time. Although such impacts were reported in the 1923 Great Kantō earthquake and the 1999 Chi-Chi earthquake, careless reconstruction in hazard-prone areas and consequently huge losses were witnessed following the 2008 Wenchuan earthquake in the Sichuan province of China, as several reconstructed settlements were severely damaged by mass movements and floods. In order to summarize experiences and identify problems in the reconstruction planning, a monitoring of one of the settlements, the town of Longchi, was carried out by image interpretation and field investigation. Seven inventories containing buildings, farmlands, roads and mitigation measures were made to study the dynamics of elements at risk and exposure over a period of 11 years. It was found that the total economic value of the newly reconstructed buildings was several times more than in the preearthquake situation in 2007, because of enormous governmental investment. Postseismic hazards were not sufficiently taken into consideration in the recovery planning before the catastrophic debris flow disaster in 2010. As a result, the direct economic loss from postseismic disasters was slightly more than the loss caused by the Wenchuan earthquake itself. The society showed an impact-adapt pattern, experiencing losses from disasters and then gaining resistance by abandoning buildings in hazard-prone areas and installing mitigation measures. The locations potentially exposed to postearthquake hazards were summarized, and a possible timetable for reconstruction was proposed. Problems might be encountered in hazard assessment, and possible solutions were discussed.
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-GOLD
U2 - 10.5194/nhess-20-1163-2020
DO - 10.5194/nhess-20-1163-2020
M3 - Article
SN - 1561-8633
VL - 20
SP - 1163
EP - 1186
JO - Natural hazards and earth system sciences
JF - Natural hazards and earth system sciences
IS - 4
ER -