More progress on tough graphs -- The Y2K report

D. Bauer, Haitze J. Broersma, E. Schmeichel

Research output: Book/ReportReportProfessional

54 Downloads (Pure)

Abstract

We now know that not every $2$-tough graph is hamiltonian. In fact for every $\epsilon > 0$, there exists a ($9/4 - \epsilon$) - tough nontraceable graph. We continue our quadrennial survey of results that relate the toughness of a graph to its cycle structure.
Original languageUndefined
Place of PublicationEnschede
PublisherUniversiteit Twente
Number of pages19
ISBN (Print)0169-2690
Publication statusPublished - 2000

Publication series

NameMemorandum / Faculty of Mathematical Sciences
PublisherDepartment of Applied Mathematics, University of Twente
No.1536
ISSN (Print)0169-2690

Keywords

  • MSC-05C35
  • MSC-05C38
  • EWI-3356
  • METIS-141201
  • IR-65723
  • MSC-05C45

Cite this

Bauer, D., Broersma, H. J., & Schmeichel, E. (2000). More progress on tough graphs -- The Y2K report. (Memorandum / Faculty of Mathematical Sciences; No. 1536). Enschede: Universiteit Twente.