TY - BOOK
T1 - Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks
AU - Durmaz, O.
AU - Ghosh, A.
AU - Krishnamachari, B.
AU - Chintalapudi, K.
PY - 2008/9
Y1 - 2008/9
N2 - We explore the following fundamental question -
how fast can information be collected from a wireless sensor
network? We consider a number of design parameters such
as, power control, time and frequency scheduling, and routing.
There are essentially two factors that hinder efficient data
collection - interference and the half-duplex single-transceiver
radios. We show that while power control helps in reducing the
number of transmission slots to complete a convergecast under a
single frequency channel, scheduling transmissions on different
frequency channels is more efficient in mitigating the effects of
interference (empirically, 6 channels suffice for most 100-node
networks). With these observations, we define a receiver-based
channel assignment problem, and prove it to be NP-complete on
general graphs. We then introduce a greedy channel assignment
algorithm that efficiently eliminates interference, and compare
its performance with other existing schemes via simulations.
Once the interference is completely eliminated, we show that
with half-duplex single-transceiver radios the achievable schedule
length is lower-bounded by max(2nk − 1,N), where nk is the
maximum number of nodes on any subtree and N is the number
of nodes in the network. We modify an existing distributed time
slot assignment algorithm to achieve this bound when a suitable
balanced routing scheme is employed. Through extensive simulations,
we demonstrate that convergecast can be completed within
up to 50% less time slots, in 100-node networks, using multiple
channels as compared to that with single-channel communication.
Finally, we also demonstrate further improvements that are
possible when the sink is equipped with multiple transceivers
or when there are multiple sinks to collect data.
AB - We explore the following fundamental question -
how fast can information be collected from a wireless sensor
network? We consider a number of design parameters such
as, power control, time and frequency scheduling, and routing.
There are essentially two factors that hinder efficient data
collection - interference and the half-duplex single-transceiver
radios. We show that while power control helps in reducing the
number of transmission slots to complete a convergecast under a
single frequency channel, scheduling transmissions on different
frequency channels is more efficient in mitigating the effects of
interference (empirically, 6 channels suffice for most 100-node
networks). With these observations, we define a receiver-based
channel assignment problem, and prove it to be NP-complete on
general graphs. We then introduce a greedy channel assignment
algorithm that efficiently eliminates interference, and compare
its performance with other existing schemes via simulations.
Once the interference is completely eliminated, we show that
with half-duplex single-transceiver radios the achievable schedule
length is lower-bounded by max(2nk − 1,N), where nk is the
maximum number of nodes on any subtree and N is the number
of nodes in the network. We modify an existing distributed time
slot assignment algorithm to achieve this bound when a suitable
balanced routing scheme is employed. Through extensive simulations,
we demonstrate that convergecast can be completed within
up to 50% less time slots, in 100-node networks, using multiple
channels as compared to that with single-channel communication.
Finally, we also demonstrate further improvements that are
possible when the sink is equipped with multiple transceivers
or when there are multiple sinks to collect data.
KW - EWI-13512
KW - METIS-251201
KW - IR-65004
M3 - Report
BT - Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks
PB - USC-Ceng
CY - Los Angeles
ER -