Multilayers for the lithography generation beyond EUVL

Research output: Other contributionOther research output

Abstract

A potential candidate for the new generation lithography beyond EUV is La/B4C multilayer optics for λ = 6.x nm. Achieving the highest possible reflectance at near normal (1.5°) incidence requires substantial practical improvement of the structural perfection of the multilayers. Pure La/B4C multilayers suffer from the formation of relatively thick interlayer at the interfaces. We have found that N-ion and N2 gas treatment of the multilayer interfaces strongly reduces interlayer formation and therefore enhances the multilayer optical contrast which leading to increase of the reflectivity at 6.x nm. The wavelength dependence of the La/B4C and LaN/B4C multilayer reflectivity has been studied in order to investigate the spectral properties of multilayers near B-absorption edge. Calculation of the maximal reflectance for La/B4C and LaN/B4C reflectivity for various wavelengths (figure 1) predicts significant gain in reflectance near the B absorption edge. We will present the influence of N-ions treatment on reflectivity properties of La/B4C multilayers near the B absorption edge and discuss the effect on throughput of an entire lithography system.
Original languageEnglish
Place of PublicationVeldhoven
Publication statusPublished - 2011

Fingerprint

lithography
reflectance
interlayers
wavelengths
ions
incidence
optics
gases

Keywords

  • METIS-304958

Cite this

@misc{42516991d0954297b4331035c5945e42,
title = "Multilayers for the lithography generation beyond EUVL",
abstract = "A potential candidate for the new generation lithography beyond EUV is La/B4C multilayer optics for λ = 6.x nm. Achieving the highest possible reflectance at near normal (1.5°) incidence requires substantial practical improvement of the structural perfection of the multilayers. Pure La/B4C multilayers suffer from the formation of relatively thick interlayer at the interfaces. We have found that N-ion and N2 gas treatment of the multilayer interfaces strongly reduces interlayer formation and therefore enhances the multilayer optical contrast which leading to increase of the reflectivity at 6.x nm. The wavelength dependence of the La/B4C and LaN/B4C multilayer reflectivity has been studied in order to investigate the spectral properties of multilayers near B-absorption edge. Calculation of the maximal reflectance for La/B4C and LaN/B4C reflectivity for various wavelengths (figure 1) predicts significant gain in reflectance near the B absorption edge. We will present the influence of N-ions treatment on reflectivity properties of La/B4C multilayers near the B absorption edge and discuss the effect on throughput of an entire lithography system.",
keywords = "METIS-304958",
author = "Makhotkin, {Igor Alexandrovich} and E. Zoethout and Eric Louis and A.M. Yakunin and Frederik Bijkerk",
year = "2011",
language = "English",
type = "Other",

}

Multilayers for the lithography generation beyond EUVL. / Makhotkin, Igor Alexandrovich; Zoethout, E.; Louis, Eric; Yakunin, A.M.; Bijkerk, Frederik.

Veldhoven. 2011, .

Research output: Other contributionOther research output

TY - GEN

T1 - Multilayers for the lithography generation beyond EUVL

AU - Makhotkin, Igor Alexandrovich

AU - Zoethout, E.

AU - Louis, Eric

AU - Yakunin, A.M.

AU - Bijkerk, Frederik

PY - 2011

Y1 - 2011

N2 - A potential candidate for the new generation lithography beyond EUV is La/B4C multilayer optics for λ = 6.x nm. Achieving the highest possible reflectance at near normal (1.5°) incidence requires substantial practical improvement of the structural perfection of the multilayers. Pure La/B4C multilayers suffer from the formation of relatively thick interlayer at the interfaces. We have found that N-ion and N2 gas treatment of the multilayer interfaces strongly reduces interlayer formation and therefore enhances the multilayer optical contrast which leading to increase of the reflectivity at 6.x nm. The wavelength dependence of the La/B4C and LaN/B4C multilayer reflectivity has been studied in order to investigate the spectral properties of multilayers near B-absorption edge. Calculation of the maximal reflectance for La/B4C and LaN/B4C reflectivity for various wavelengths (figure 1) predicts significant gain in reflectance near the B absorption edge. We will present the influence of N-ions treatment on reflectivity properties of La/B4C multilayers near the B absorption edge and discuss the effect on throughput of an entire lithography system.

AB - A potential candidate for the new generation lithography beyond EUV is La/B4C multilayer optics for λ = 6.x nm. Achieving the highest possible reflectance at near normal (1.5°) incidence requires substantial practical improvement of the structural perfection of the multilayers. Pure La/B4C multilayers suffer from the formation of relatively thick interlayer at the interfaces. We have found that N-ion and N2 gas treatment of the multilayer interfaces strongly reduces interlayer formation and therefore enhances the multilayer optical contrast which leading to increase of the reflectivity at 6.x nm. The wavelength dependence of the La/B4C and LaN/B4C multilayer reflectivity has been studied in order to investigate the spectral properties of multilayers near B-absorption edge. Calculation of the maximal reflectance for La/B4C and LaN/B4C reflectivity for various wavelengths (figure 1) predicts significant gain in reflectance near the B absorption edge. We will present the influence of N-ions treatment on reflectivity properties of La/B4C multilayers near the B absorption edge and discuss the effect on throughput of an entire lithography system.

KW - METIS-304958

M3 - Other contribution

CY - Veldhoven

ER -