Abstract
The structural evolution in wet alkoxide-carboxylate sol–gel precursor films of barium titanate upon drying was investigated by time-resolved small-angle X-ray scattering (SAXS). The morphology of as-dried amorphous precursor thin films was investigated by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). Sols were prepared from titanium(IV) iso-propoxide in 2-methoxyethanol and barium acetate in acetic acid. The structures that were visible with SAXS could be divided into oligomeric structures with fractal-like scattering characteristics, and randomly packed agglomerates of nanoparticles of similar size. The fractal-like morphologies disappeared during film drying, probably because they were not stable in the absence of a solvent matrix. Only the ordered agglomerate-like structures remained in the as-dried films. EELS on as-dried films showed that spatial separation between barium and titanium-rich domains occurred during the drying of the thin films on a length scale of nanometers, depending on hydrolysis ratio. This demonstrates that as-dried films are not necessarily uniform on the mesoscopic level.
Original language | English |
---|---|
Pages (from-to) | 425-434 |
Number of pages | 10 |
Journal | The Journal of physical chemistry C |
Volume | 116 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 |
Keywords
- METIS-288491
- IR-81870