TY - JOUR
T1 - Negatively charged phospholipids restore prePhoE translocation across phosphatidylglyceroldepleted Escherichia coli inner membranes
AU - Kusters, Ron
AU - Dowhan, William
AU - De Kruijff, Ben
PY - 1991/12/1
Y1 - 1991/12/1
N2 - Translocation of outer membrane precursor proteins across the Escherichia coli inner membrane is severely hampered in lipid biosynthetic mutants with strongly reduced phosphatidylglycerol (PG) levels (De Vrije, T., De Swart, R. L., Dowhan, W., Tommassen, J., and De Kruijff, B. (1988) Nature 334, 173-175; Lill, R., Dowhan, W., and Wickner, W. (1990) Cell 60, 271-280). Two independent methods were used to demonstrate that anionic lipids by virtue of their negative head-group charge are involved in membrane translocation of the precursor of the pore protein PhoE. Using a lipid transfer protein-based method we show that introduction from lipid vesicles of PG and other acidic phospholipids but not of phosphatidylcholine restores efficient translocation across the membrane of PG-depleted inner membrane vesicles. Moreover, translocation was found to be proportional to the PG content in vesicles isolated from strain HDL11 in which the PG content was altered by varying the synthesis of the PG-phosphate synthase.
AB - Translocation of outer membrane precursor proteins across the Escherichia coli inner membrane is severely hampered in lipid biosynthetic mutants with strongly reduced phosphatidylglycerol (PG) levels (De Vrije, T., De Swart, R. L., Dowhan, W., Tommassen, J., and De Kruijff, B. (1988) Nature 334, 173-175; Lill, R., Dowhan, W., and Wickner, W. (1990) Cell 60, 271-280). Two independent methods were used to demonstrate that anionic lipids by virtue of their negative head-group charge are involved in membrane translocation of the precursor of the pore protein PhoE. Using a lipid transfer protein-based method we show that introduction from lipid vesicles of PG and other acidic phospholipids but not of phosphatidylcholine restores efficient translocation across the membrane of PG-depleted inner membrane vesicles. Moreover, translocation was found to be proportional to the PG content in vesicles isolated from strain HDL11 in which the PG content was altered by varying the synthesis of the PG-phosphate synthase.
UR - http://www.scopus.com/inward/record.url?scp=0025835871&partnerID=8YFLogxK
M3 - Article
C2 - 1851153
AN - SCOPUS:0025835871
SN - 0021-9258
VL - 266
SP - 8659
EP - 8662
JO - Journal of biological chemistry
JF - Journal of biological chemistry
IS - 14
ER -