Abstract
We present a novel approach to automated estimation of agreement intensity levels from facial images. To this end, we employ the MAHNOB Mimicry database of subjects recorded during dyadic interactions, where the facial images are annotated in terms of agreement intensity levels using the Likert scale (strong disagreement, disagreement, neutral, agreement and strong agreement). Dynamic modelling of the agreement levels is accomplished by means of a Conditional Ordinal Random Field model. Specifically, we propose a novel Neural Conditional Ordinal Random Field model that performs non-linear feature extraction from face images using the notion of Neural Networks, while also modelling temporal and ordinal relationships between the agreement levels. We show in our experiments that the proposed approach outperforms existing methods for modelling of sequential data. The preliminary results obtained on five subjects demonstrate that the intensity of agreement can successfully be estimated from facial images (39% F1 score) using the proposed method.
Original language | Undefined |
---|---|
Title of host publication | Proceedings of the International Conference on Affective Computing and Intelligent Interaction (ACII 2015) |
Editors | N. Rakicevic, O. Rudovic, S. Petrids, Maja Pantic |
Place of Publication | USA |
Publisher | IEEE |
Pages | 885-890 |
Number of pages | 6 |
ISBN (Print) | 978-1-4799-9953-8 |
DOIs | |
Publication status | Published - Sept 2015 |
Event | 6th International Conference on Affective Computing and Intelligent Interaction, ACII 2015 - Xi'an, China Duration: 21 Sept 2015 → 24 Sept 2015 Conference number: 6 |
Publication series
Name | |
---|---|
Publisher | IEEE Communications Society |
Conference
Conference | 6th International Conference on Affective Computing and Intelligent Interaction, ACII 2015 |
---|---|
Abbreviated title | ACII |
Country/Territory | China |
City | Xi'an |
Period | 21/09/15 → 24/09/15 |
Keywords
- HMI-HF: Human Factors
- EWI-25800
- conditional ordinal random fields
- EC Grant Agreement nr.: FP7/611153
- METIS-316020
- Neural Networks
- IR-99504
- Agreement analysis
- EC Grant Agreement nr.: FP7/2007-2013