New insights for detecting and deriving thermal properties of lava flow using infrared satellite during 2014-2015 effusive eruption at Holuhraun, Iceland

M. Aufaristama*, Armann Hoskuldsson, Ingibjorg Jonsdottir, Magnus Orn Ulfarsson, Thorvaldur Thordarson

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)
2 Downloads (Pure)

Abstract

A new lava field was formed at Holuhraun in the Icelandic Highlands, north of Vatnajökull glacier, in 2014-2015. It was the largest effusive eruption in Iceland for 230 years, with an estimated lava bulk volume of ~1.44 km3 covering an area of ~84 km2. Satellite-based remote sensing is commonly used as preliminary assessment of large scale eruptions since it is relatively efficient for collecting and processing the data. Landsat-8 infrared datasets were used in this study, and we used dual-band technique to determine the subpixel temperature (Th) of the lava. We developed a new spectral index called the thermal eruption index (TEI) based on the shortwave infrared (SWIR) and thermal infrared (TIR) bands allowing us to differentiate thermal domain within the lava flow field. Lava surface roughness effects are accounted by using the Hurst coefficient (H) for deriving the radiant flux (Φrad) and the crust thickness (Δh). Here, we compare the results derived from satellite images with field measurements. The result from 2 December 2014 shows that a temperature estimate (1096 °C; occupying area of 3.05 m2) from a lava breakout has a close correspondence with a thermal camera measurement (1047 °C; occupying area of 4.52 m2). We also found that the crust thickness estimate in the lava channel during 6 September 2014 (~3.4-7.7 m) compares closely with the lava height measurement from the field (~2.6-6.6 m); meanwhile, the total radiant flux peak is underestimated (~8 GW) compared to other studies (~25 GW), although the trend shows good agreement with both field observation and other studies. This study provides new insights for monitoring future effusive eruption using infrared satellite images.

Original languageEnglish
Article number151
Pages (from-to)1-24
Number of pages24
JournalRemote sensing
Volume10
Issue number1
DOIs
Publication statusPublished - 20 Jan 2018
Externally publishedYes

Keywords

  • Crust thickness
  • Dual-band
  • Effusive eruption
  • Hurst coefficient
  • Landsat-8
  • Radiant flux
  • SWIR
  • TEI
  • TIR
  • ITC-CV

Fingerprint Dive into the research topics of 'New insights for detecting and deriving thermal properties of lava flow using infrared satellite during 2014-2015 effusive eruption at Holuhraun, Iceland'. Together they form a unique fingerprint.

Cite this