New insights into the role played by ZnO in sulfur crosslinking by ways of a sulfur donor

Steluta Gina Butuc, Arne Janssen (Contributor), Kees van Leerdam (Contributor), Auke Talma (Contributor), Anke Blume (Contributor)

Research output: Contribution to conferencePaper

8 Downloads (Pure)

Abstract

Sulfur crosslinking was discovered by Goodyear and Hancock more than 150 years ago and led to the development of a new material science application – rubber. Since the first discovery of ways of vulcanizing rubber for improved dimensional stability, mechanical properties and chemical resistance, sulfur continued to be analyzed to elucidate its role in the crosslinking process. Early after the discovery was made, it was determined that vulcanization by ways of elemental sulfur alone is too slow for commercial purposes and ways to expedite the crosslinking reaction were studied. Zinc oxide (ZnO) in combination with stearic acid were discovered as best ways for improved sulfur reactivity in the vulcanization process. Zinc ions combine with stearic acid and a cyclic tetrasulfide which acts as a sulfur accelerator to form an active complex which catalyzes the vulcanization process. Since the mechanism of reaction is complex, analyzing the structure at the nano level could yield an insight into the process. This paper is focusing on transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDX) for an in-depth analysis of the process with an emphasis on ZnO crystallography/surface chemistry and its influence on sulfur crosslink process.
Original languageEnglish
Publication statusPublished - Oct 2019
EventFall 196th Technical Meeting of Rubber Division, ACS 2019 - Cleveland, United States
Duration: 10 Oct 201912 Oct 2019
Conference number: 196

Conference

ConferenceFall 196th Technical Meeting of Rubber Division, ACS 2019
Abbreviated titleACS 2019
Country/TerritoryUnited States
CityCleveland
Period10/10/1912/10/19

Fingerprint

Dive into the research topics of 'New insights into the role played by ZnO in sulfur crosslinking by ways of a sulfur donor'. Together they form a unique fingerprint.

Cite this