Abstract
Sulfur crosslinking was discovered by Goodyear and Hancock more than 150 years ago and led to the development of a new material science application – rubber. Since the first discovery of ways of vulcanizing rubber for improved dimensional stability, mechanical properties and chemical resistance, sulfur continued to be analyzed to elucidate its role in the crosslinking process. Early after the discovery was made, it was determined that vulcanization by ways of elemental sulfur alone is too slow for commercial purposes and ways to expedite the crosslinking reaction were studied. Zinc oxide (ZnO) in combination with stearic acid were discovered as best ways for improved sulfur reactivity in the vulcanization process. Zinc ions combine with stearic acid and a cyclic tetrasulfide which acts as a sulfur accelerator to form an active complex which catalyzes the vulcanization process. Since the mechanism of reaction is complex, analyzing the structure at the nano level could yield an insight into the process. This paper is focusing on transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDX) for an in-depth analysis of the process with an emphasis on ZnO crystallography/surface chemistry and its influence on sulfur crosslink process.
Original language | English |
---|---|
Publication status | Published - Oct 2019 |
Event | Fall 196th Technical Meeting of Rubber Division, ACS 2019 - Cleveland, United States Duration: 10 Oct 2019 → 12 Oct 2019 Conference number: 196 |
Conference
Conference | Fall 196th Technical Meeting of Rubber Division, ACS 2019 |
---|---|
Abbreviated title | ACS 2019 |
Country/Territory | United States |
City | Cleveland |
Period | 10/10/19 → 12/10/19 |