TY - JOUR
T1 - No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas
AU - Reijnders, C.M.
AU - Waaijer, C.J.
AU - Hamilton, A.
AU - Buddingh, E.P.
AU - Dijkstra, S.P.
AU - Ham, J.
AU - Bakker, E.
AU - Szuhai, K.
AU - Karperien, Hermanus Bernardus Johannes
AU - Hogendoorn, Pancras
AU - Stringer, S.E.
AU - Bovée, Judith
PY - 2010
Y1 - 2010
N2 - Multiple osteochondromas (MO) is an autosomal dominant disorder caused by germline mutations in EXT1 and/or EXT2 . In contrast, solitary osteochondroma (SO) is nonhereditary. Products of the EXT gene are involved in heparan sulfate (HS) biosynthesis. In this study, we investigated whether osteochondromas arise via either loss of heterozygosity (2 hits) or haploinsufficiency. An in vitro three-dimensional chondrogenic pellet model was used to compare heterozygous bone marrow–derived mesenchymal stem cells (MSCs EXT wt/−) of MO patients with normal MSCs and the corresponding tumor specimens (presumed EXT −/−). We demonstrated a second hit in EXT in five of eight osteochondromas. HS chain length and structure, in vitro chondrogenesis, and EXT expression levels were identical in both EXT wt/− and normal MSCs. Immunohistochemistry for HS, HS proteoglycans, and HS-dependent signaling pathways (eg, TGF-β/BMP, Wnt, and PTHLH) also showed no differences. The cartilaginous cap of osteochondroma contained a mixture of HS-positive and HS-negative cells. Because a heterozygous EXT mutation does not affect chondrogenesis, EXT , HS, or downstream signaling pathways in MSCs, our results refute the haploinsufficiency theory. We found a second hit in 63% of analyzed osteochondromas, supporting the hypothesis that osteochondromas arise via loss of heterozygosity. The detection of the second hit may depend on the ratio of HS-positive (normal) versus HS-negative (mutated) cells in the cartilaginous cap of the osteochondroma.
AB - Multiple osteochondromas (MO) is an autosomal dominant disorder caused by germline mutations in EXT1 and/or EXT2 . In contrast, solitary osteochondroma (SO) is nonhereditary. Products of the EXT gene are involved in heparan sulfate (HS) biosynthesis. In this study, we investigated whether osteochondromas arise via either loss of heterozygosity (2 hits) or haploinsufficiency. An in vitro three-dimensional chondrogenic pellet model was used to compare heterozygous bone marrow–derived mesenchymal stem cells (MSCs EXT wt/−) of MO patients with normal MSCs and the corresponding tumor specimens (presumed EXT −/−). We demonstrated a second hit in EXT in five of eight osteochondromas. HS chain length and structure, in vitro chondrogenesis, and EXT expression levels were identical in both EXT wt/− and normal MSCs. Immunohistochemistry for HS, HS proteoglycans, and HS-dependent signaling pathways (eg, TGF-β/BMP, Wnt, and PTHLH) also showed no differences. The cartilaginous cap of osteochondroma contained a mixture of HS-positive and HS-negative cells. Because a heterozygous EXT mutation does not affect chondrogenesis, EXT , HS, or downstream signaling pathways in MSCs, our results refute the haploinsufficiency theory. We found a second hit in 63% of analyzed osteochondromas, supporting the hypothesis that osteochondromas arise via loss of heterozygosity. The detection of the second hit may depend on the ratio of HS-positive (normal) versus HS-negative (mutated) cells in the cartilaginous cap of the osteochondroma.
U2 - 10.2353/ajpath.2010.100296
DO - 10.2353/ajpath.2010.100296
M3 - Article
SN - 0002-9440
VL - 177
SP - 1946
EP - 1957
JO - The American journal of pathology
JF - The American journal of pathology
IS - 4
ER -