TY - JOUR
T1 - Noise simulation and correction in synthetic airborne TIR data for mineral quantification
AU - Hecker, C.A.
AU - Riley, D.
AU - van der Meijde, M.
AU - van der Meer, F.D.
PY - 2016
Y1 - 2016
N2 - Rock-forming minerals (such as feldspar and quartz) can be identified and quantified from thermal infrared (TIR) laboratory spectroscopy using spectral models. This paper uses synthetic airborne TIR spectra to test whether the hyperspectral Spatially Enhanced Broadband Array Spectrograph System (SEBASS) would theoretically be able to detect quartz and feldspar minerals and quantitatively predict mineral modes in felsic igneous rocks. Data from a previous laboratory study were used to simulate TIR spectra with band locations and noise levels of the SEBASS sensor. The quantitative partial least squares regression (PLSR) models from that study were applied to newly created synthetic SEBASS data, and results were compared with the predictions from the previous study. Predicted compositions based on SEBASS band positions are nearly identical (ρ = 0.995) to those based on laboratory resolution. Results are still reliable [prediction errors within 0.4% (absolute)] to the original laboratory PLSR predictions when adding up to 1% noise (about five times the SEBASS noise level) to the synthetic data. Prediction errors rapidly increase when noise levels beyond 1% are used. These results show that SEBASS' spectral resolution, spectral coverage, and signal-to-noise levels are sufficient to quantitatively predict quartz and feldspar amounts, and feldspar compositions with models based on PLSR. Spectral distortions, such as reduced spectral contrast, tilts, and vertical shifts, must be compensated for before these quantitative models are applied. A mean and standard deviation (MASD) normalization is proposed using a set of ground data for compensating systematic errors that are common to all image pixels.
AB - Rock-forming minerals (such as feldspar and quartz) can be identified and quantified from thermal infrared (TIR) laboratory spectroscopy using spectral models. This paper uses synthetic airborne TIR spectra to test whether the hyperspectral Spatially Enhanced Broadband Array Spectrograph System (SEBASS) would theoretically be able to detect quartz and feldspar minerals and quantitatively predict mineral modes in felsic igneous rocks. Data from a previous laboratory study were used to simulate TIR spectra with band locations and noise levels of the SEBASS sensor. The quantitative partial least squares regression (PLSR) models from that study were applied to newly created synthetic SEBASS data, and results were compared with the predictions from the previous study. Predicted compositions based on SEBASS band positions are nearly identical (ρ = 0.995) to those based on laboratory resolution. Results are still reliable [prediction errors within 0.4% (absolute)] to the original laboratory PLSR predictions when adding up to 1% noise (about five times the SEBASS noise level) to the synthetic data. Prediction errors rapidly increase when noise levels beyond 1% are used. These results show that SEBASS' spectral resolution, spectral coverage, and signal-to-noise levels are sufficient to quantitatively predict quartz and feldspar amounts, and feldspar compositions with models based on PLSR. Spectral distortions, such as reduced spectral contrast, tilts, and vertical shifts, must be compensated for before these quantitative models are applied. A mean and standard deviation (MASD) normalization is proposed using a set of ground data for compensating systematic errors that are common to all image pixels.
KW - ITC-ISI-JOURNAL-ARTICLE
KW - 2023 OA procedure
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2016/isi/hecker_noi.pdf
U2 - 10.1109/TGRS.2015.2482386
DO - 10.1109/TGRS.2015.2482386
M3 - Article
SN - 0196-2892
VL - 54
SP - 1553
EP - 1545
JO - IEEE transactions on geoscience and remote sensing
JF - IEEE transactions on geoscience and remote sensing
IS - 3
ER -