TY - GEN
T1 - Novel EUV mask absorber evaluation in support of next-generation EUV imaging
AU - Philipsen, Vicky
AU - Luong, Kim Vu
AU - Opsomer, Karl
AU - Detavernier, Christophe
AU - Hendrickx, Eric
AU - Erdmann, Andreas
AU - Evanschitzky, Peter
AU - Van De Kruijs, Robbert W.E.
AU - Heidarnia-Fathabad, Zahra
AU - Scholze, Frank
AU - Laubis, Christian
PY - 2018/10/10
Y1 - 2018/10/10
N2 - In next-generation EUV imaging for foundry N5 dimensions and beyond, inherent pitch- and orientation-dependent effects on wafer level will consume a significant part of the lithography budget using the current Ta-based mask. Mask absorber optimization can mitigate these so-called mask 3D effects. Thin metal absorbers like Ni and Co have been experimentally investigated due to their high EUV absorption, but they pose challenges on the current technology of subtractive mask patterning [1]. A simulation study of attenuated EUV phase shift masks has identified through multiobjective optimization superior imaging solutions for specific use cases and illumination conditions [2]. Evaluating novel EUV mask absorbers evolves on two levels, demonstrating (1) improvements from lithographic perspective and (2) compatibility with the full mask supply chain including material deposition, absorber patterning, scanner environment compatibility and mask lifetime. On the lithographic level, we have identified regions based on the material optical properties and their gain in imaging performance compared to the reference Ta-based absorber. Within each improvement region we engineered mask absorber materials to achieve both the required imaging capabilities, as well as the technical requirements for an EUV mask absorber. We discuss the material development of Te-based alloys and Ag-based layered structures, because of their high EUV extinction. For the attenuated phase shift materials, we start from a Ru-base material, due to its low refractive index, and construct Ru-alloys. On the experimental level, we examined our novel mask absorber materials against an initial mask absorber requirement list using an experimental test flow. Candidate materials are evaluated on film morphology and stability through thermal, hydrogen, EUV loading, and chemical cleaning, for their EUV optical constants by EUV reflectometry, as well as preliminary for selective dry etch. The careful mask absorber evaluation, combining imaging simulations and experimental material tests, allowed us to narrow down to promising combinations for novel EUV mask absorbers.
AB - In next-generation EUV imaging for foundry N5 dimensions and beyond, inherent pitch- and orientation-dependent effects on wafer level will consume a significant part of the lithography budget using the current Ta-based mask. Mask absorber optimization can mitigate these so-called mask 3D effects. Thin metal absorbers like Ni and Co have been experimentally investigated due to their high EUV absorption, but they pose challenges on the current technology of subtractive mask patterning [1]. A simulation study of attenuated EUV phase shift masks has identified through multiobjective optimization superior imaging solutions for specific use cases and illumination conditions [2]. Evaluating novel EUV mask absorbers evolves on two levels, demonstrating (1) improvements from lithographic perspective and (2) compatibility with the full mask supply chain including material deposition, absorber patterning, scanner environment compatibility and mask lifetime. On the lithographic level, we have identified regions based on the material optical properties and their gain in imaging performance compared to the reference Ta-based absorber. Within each improvement region we engineered mask absorber materials to achieve both the required imaging capabilities, as well as the technical requirements for an EUV mask absorber. We discuss the material development of Te-based alloys and Ag-based layered structures, because of their high EUV extinction. For the attenuated phase shift materials, we start from a Ru-base material, due to its low refractive index, and construct Ru-alloys. On the experimental level, we examined our novel mask absorber materials against an initial mask absorber requirement list using an experimental test flow. Candidate materials are evaluated on film morphology and stability through thermal, hydrogen, EUV loading, and chemical cleaning, for their EUV optical constants by EUV reflectometry, as well as preliminary for selective dry etch. The careful mask absorber evaluation, combining imaging simulations and experimental material tests, allowed us to narrow down to promising combinations for novel EUV mask absorbers.
KW - 2019 OA procedure
KW - EUV mask absorber
KW - Mask 3D effects
KW - Rigorous mask 3D lithography simulation
KW - Absorber characterization
UR - http://www.scopus.com/inward/record.url?scp=85058323392&partnerID=8YFLogxK
U2 - 10.1117/12.2501799
DO - 10.1117/12.2501799
M3 - Conference contribution
AN - SCOPUS:85058323392
VL - 10810
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Photomask Technology 2018
A2 - Gallagher, Emily E.
A2 - Rankin, Jed H.
PB - SPIE
T2 - 2018 SPIE Photomask Technology
Y2 - 17 September 2018 through 19 September 2018
ER -