Novel solid nanohybrids that stabilize oil/water emulsions and catalyze reactions at the interface

Jimmy A. Faria, Min Shen, Daniel E. Resasco

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review


A novel system has been developed to catalyze reactions at the oil/water interface of a biphasic liquid system. Stabilization of emulsions was accomplished through the use of nanohybrids composed of hydrophilic oxide particles and hydrophobic Single-Walled Carbon Nanotubes (SWNT), generated in the CoMoCAT process.[1-5] These nanohybrids are inherently amphiphilic, and tend to be adsorbed at the interface of a biphasic water/oil liquid system. When enough energy is added to the system, these particles stabilize emulsions by suppressing the coalescence of the droplets and increasing the viscoelastic or pseudoplastic character of the liquid film between droplets.[6,7] Depending on the contact angle of the particles at the liquid-liquid interface, it was possible to stabilize water-in-oil or oil-in-water emulsions. The resulting emulsions are remarkably stable against coalescence and sedimentation, and can be easily separated by filtration or centrifugation, which make them suitable for applications in interfacial catalytic processes in which the catalyst can be easily recovered after reaction. Catalytic activity was imparted by transition metal clusters supported onto the nanohybrids. These metals selectively catalyze reactions at the oil/water interface. The proof-of-concept of the biphasic hydrogenation and condensation catalysis was obtained with three reactions of interest in biorefining. The first example was the hydrodeoxygenation of vanillin (4-hydroxy-3-methoxybenzaldehyde). The second example was the conversion of molecules that were exclusively soluble in the aqueous or the organic phase, like glutaraldehyde (water phase) and octanal (oil phase). In the third example we explored a tandem reaction sequence in which Pd-catalyzed hydrogenation was paired with a preceding aldol-condensation of 5-methylfurfural and acetone. It was demonstrated that with these nanohybrids it is possible to selectively accomplish hydrodeoxygenation and condensation reactions at the water/oil interface of a biphasic system, followed by migration of the products to the oil phase. This contribution provides a proof-of-concept for a promising catalytic system with many potential applications in the liquid phase, such as bio-oil upgrading, production of specialty chemicals, and pharmaceutical applications in which selective reaction and product separations, based on water solubility, can be desirable.

Original languageEnglish
Title of host publicationMultifunctional Nanoparticle Systems - Coupled Behavior and Applications
Number of pages6
Publication statusPublished - 1 Dec 2010
Externally publishedYes
EventMRS Spring Meeting & Exhibit 2010 - San Francisco, United States
Duration: 5 Apr 20109 Apr 2010

Publication series

NameMaterials Research Society Symposium Proceedings
ISSN (Print)0272-9172


ConferenceMRS Spring Meeting & Exhibit 2010
CountryUnited States
CitySan Francisco
Internet address


Dive into the research topics of 'Novel solid nanohybrids that stabilize oil/water emulsions and catalyze reactions at the interface'. Together they form a unique fingerprint.

Cite this