TY - JOUR
T1 - Numerical modeling of natural convection in an open cavity with two vertical thin heat sources subjected to a nanofluid
AU - Mahmoudi, Amir Houshang
AU - Shahi, Mina
AU - Shahedin, Abed Moheb
AU - Hemati, Neda
PY - 2011/1
Y1 - 2011/1
N2 - This paper presents a numerical study of natural convection cooling of two heat sources vertically attached to horizontal walls of a cavity. The right opening boundary is subjected to the copper-water nanofluid at constant low temperature and pressure, while the other boundaries are assumed to be adiabatic. The governing equations have been solved using the finite volume approach, using SIMPLE algorithm on the collocated arrangement. The study has been carried out for the Rayleigh number in the range 104≤Ra≤107, and for solid volume fraction 0≤φ≤0.05. In order to investigate the effect of heat source location, three different placement configurations of heat sources are considered. The effects of both Rayleigh numbers and heat source locations on the streamlines, isotherms, Nusselt number are investigated. The results indicate that the flow field and temperature distributions inside the cavity are strongly dependent on the Rayleigh numbers and the position of the heat sources. The results also indicate that the Nusselt number is an increasing function of the Rayleigh number, the distance between two heat sources, and distance from the wall. In addition it is observed that the average Nusselt number increases linearly with the increase in the solid volume fraction of nanoparticles.
AB - This paper presents a numerical study of natural convection cooling of two heat sources vertically attached to horizontal walls of a cavity. The right opening boundary is subjected to the copper-water nanofluid at constant low temperature and pressure, while the other boundaries are assumed to be adiabatic. The governing equations have been solved using the finite volume approach, using SIMPLE algorithm on the collocated arrangement. The study has been carried out for the Rayleigh number in the range 104≤Ra≤107, and for solid volume fraction 0≤φ≤0.05. In order to investigate the effect of heat source location, three different placement configurations of heat sources are considered. The effects of both Rayleigh numbers and heat source locations on the streamlines, isotherms, Nusselt number are investigated. The results indicate that the flow field and temperature distributions inside the cavity are strongly dependent on the Rayleigh numbers and the position of the heat sources. The results also indicate that the Nusselt number is an increasing function of the Rayleigh number, the distance between two heat sources, and distance from the wall. In addition it is observed that the average Nusselt number increases linearly with the increase in the solid volume fraction of nanoparticles.
KW - Heat source
KW - Nanofluid
KW - Natural convection
KW - Numerical study
KW - Open cavity
UR - http://www.scopus.com/inward/record.url?scp=78650295554&partnerID=8YFLogxK
U2 - 10.1016/j.icheatmasstransfer.2010.09.009
DO - 10.1016/j.icheatmasstransfer.2010.09.009
M3 - Article
AN - SCOPUS:78650295554
SN - 0735-1933
VL - 38
SP - 110
EP - 118
JO - International Communications in Heat and Mass Transfer
JF - International Communications in Heat and Mass Transfer
IS - 1
ER -