Numerical simulations of rotating Rayleigh-Bénard convection

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

1 Citation (Scopus)

Abstract

The Rayleigh-Bénard (RB) system is relevant to astro- and geophysical phenomena, including convection in the ocean, the Earth’s outer core, and the outer layer of the Sun. The dimensionless heat transfer (the Nusselt number Nu) in the system depends on the Rayleigh number Ra=βgΔL 3/(νκ) and the Prandtl number Pr=ν/κ. Here, β is the thermal expansion coefficient, g the gravitational acceleration, Δ the temperature difference between the bottom and top, and ν and κ the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate H is used in the form of the Rossby number Ro=(βgΔ/L)/(2H). The key question is: How does the heat transfer depend on rotation and the other two control parameters: Nu(Ra, Pr, Ro)? Here we will answer this question by giving a summary of our results presented in (Zhong et al., 2009; Stevens et al., 2009; Stevens et al., 2010).
Original languageEnglish
Title of host publicationDirect and Large-Eddy Simulation VIII
EditorsHans Kuerten, Bernard Geurts, Vincenzo Armenio, Jochen Fröhlich
Place of PublicationDordrecht
PublisherSpringer
Pages359-364
Number of pages6
ISBN (Print)978-94-007-2481-5
DOIs
Publication statusPublished - 2011
Event8th ERCOFTAC Workshop on Direct and Large-Eddy Simulation VIII, DLES 2010 - Eindhoven University of Technology, Eindhoven, Netherlands
Duration: 7 Jul 20109 Jul 2010
Conference number: 8

Publication series

NameERCOFTAC series
PublisherSpringer
Volume15
ISSN (Print)1382-4309

Workshop

Workshop8th ERCOFTAC Workshop on Direct and Large-Eddy Simulation VIII, DLES 2010
Abbreviated titleDLES
CountryNetherlands
CityEindhoven
Period7/07/109/07/10

Keywords

  • Rayleigh number
  • Direct numerical simulation
  • Thermal boundary layer
  • Heat transfer enhancement
  • Rossby number

Fingerprint Dive into the research topics of 'Numerical simulations of rotating Rayleigh-Bénard convection'. Together they form a unique fingerprint.

  • Cite this

    Stevens, R. J. A. M., Clercx, H. J. H., & Lohse, D. (2011). Numerical simulations of rotating Rayleigh-Bénard convection. In H. Kuerten, B. Geurts, V. Armenio, & J. Fröhlich (Eds.), Direct and Large-Eddy Simulation VIII (pp. 359-364). (ERCOFTAC series; Vol. 15). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2482-2_57