### Abstract

The Rayleigh-Bénard (RB) system is relevant to astro- and geophysical phenomena, including convection in the ocean, the Earth’s outer core, and the outer layer of the Sun. The dimensionless heat transfer (the Nusselt number Nu) in the system depends on the Rayleigh number Ra=βgΔL 3/(νκ) and the Prandtl number Pr=ν/κ. Here, β is the thermal expansion coefficient, g the gravitational acceleration, Δ the temperature difference between the bottom and top, and ν and κ the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate H is used in the form of the Rossby number Ro=(βgΔ/L)/(2H). The key question is: How does the heat transfer depend on rotation and the other two control parameters: Nu(Ra, Pr, Ro)? Here we will answer this question by giving a summary of our results presented in (Zhong et al., 2009; Stevens et al., 2009; Stevens et al., 2010).

Original language | English |
---|---|

Title of host publication | Direct and Large-Eddy Simulation VIII |

Editors | Hans Kuerten, Bernard Geurts, Vincenzo Armenio, Jochen Fröhlich |

Place of Publication | Dordrecht |

Publisher | Springer |

Pages | 359-364 |

Number of pages | 6 |

ISBN (Print) | 978-94-007-2481-5 |

DOIs | |

Publication status | Published - 2011 |

Event | 8th ERCOFTAC Workshop on Direct and Large-Eddy Simulation VIII, DLES 2010 - Eindhoven University of Technology, Eindhoven, Netherlands Duration: 7 Jul 2010 → 9 Jul 2010 Conference number: 8 |

### Publication series

Name | ERCOFTAC series |
---|---|

Publisher | Springer |

Volume | 15 |

ISSN (Print) | 1382-4309 |

### Workshop

Workshop | 8th ERCOFTAC Workshop on Direct and Large-Eddy Simulation VIII, DLES 2010 |
---|---|

Abbreviated title | DLES |

Country | Netherlands |

City | Eindhoven |

Period | 7/07/10 → 9/07/10 |

### Keywords

- Rayleigh number
- Direct numerical simulation
- Thermal boundary layer
- Heat transfer enhancement
- Rossby number

## Fingerprint Dive into the research topics of 'Numerical simulations of rotating Rayleigh-Bénard convection'. Together they form a unique fingerprint.

## Cite this

Stevens, R. J. A. M., Clercx, H. J. H., & Lohse, D. (2011). Numerical simulations of rotating Rayleigh-Bénard convection. In H. Kuerten, B. Geurts, V. Armenio, & J. Fröhlich (Eds.),

*Direct and Large-Eddy Simulation VIII*(pp. 359-364). (ERCOFTAC series; Vol. 15). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2482-2_57