Numerical simulations of rotating Rayleigh-Bénard convection

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

1 Citation (Scopus)

Abstract

The Rayleigh-Bénard (RB) system is relevant to astro- and geophysical phenomena, including convection in the ocean, the Earth’s outer core, and the outer layer of the Sun. The dimensionless heat transfer (the Nusselt number Nu) in the system depends on the Rayleigh number Ra=βgΔL 3/(νκ) and the Prandtl number Pr=ν/κ. Here, β is the thermal expansion coefficient, g the gravitational acceleration, Δ the temperature difference between the bottom and top, and ν and κ the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate H is used in the form of the Rossby number Ro=(βgΔ/L)/(2H). The key question is: How does the heat transfer depend on rotation and the other two control parameters: Nu(Ra, Pr, Ro)? Here we will answer this question by giving a summary of our results presented in (Zhong et al., 2009; Stevens et al., 2009; Stevens et al., 2010).
Original languageEnglish
Title of host publicationDirect and Large-Eddy Simulation VIII
EditorsHans Kuerten, Bernard Geurts, Vincenzo Armenio, Jochen Fröhlich
Place of PublicationDordrecht
PublisherSpringer
Pages359-364
Number of pages6
ISBN (Print)978-94-007-2481-5
DOIs
Publication statusPublished - 2011
Event8th ERCOFTAC Workshop on Direct and Large-Eddy Simulation VIII 2010 - Eindhoven University of Technology, Eindhoven, Netherlands
Duration: 7 Jul 20109 Jul 2010
Conference number: 8

Publication series

NameERCOFTAC series
PublisherSpringer
Volume15
ISSN (Print)1382-4309

Workshop

Workshop8th ERCOFTAC Workshop on Direct and Large-Eddy Simulation VIII 2010
Abbreviated titleDLES
CountryNetherlands
CityEindhoven
Period7/07/109/07/10

Fingerprint

convection
heat transfer
Rayleigh number
Prandtl number
thermal diffusivity
Nusselt number
thermal expansion
temperature gradients
oceans
kinematics
simulation
viscosity
coefficients

Keywords

  • Rayleigh number
  • Direct numerical simulation
  • Thermal boundary layer
  • Heat transfer enhancement
  • Rossby number

Cite this

Stevens, R. J. A. M., Clercx, H. J. H., & Lohse, D. (2011). Numerical simulations of rotating Rayleigh-Bénard convection. In H. Kuerten, B. Geurts, V. Armenio, & J. Fröhlich (Eds.), Direct and Large-Eddy Simulation VIII (pp. 359-364). (ERCOFTAC series; Vol. 15). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2482-2_57
Stevens, Richard J.A.M. ; Clercx, Herman J.H. ; Lohse, Detlef. / Numerical simulations of rotating Rayleigh-Bénard convection. Direct and Large-Eddy Simulation VIII. editor / Hans Kuerten ; Bernard Geurts ; Vincenzo Armenio ; Jochen Fröhlich. Dordrecht : Springer, 2011. pp. 359-364 (ERCOFTAC series).
@inproceedings{92dc85feefdd40888698d260f5413c71,
title = "Numerical simulations of rotating Rayleigh-B{\'e}nard convection",
abstract = "The Rayleigh-B{\'e}nard (RB) system is relevant to astro- and geophysical phenomena, including convection in the ocean, the Earth’s outer core, and the outer layer of the Sun. The dimensionless heat transfer (the Nusselt number Nu) in the system depends on the Rayleigh number Ra=βgΔL 3/(νκ) and the Prandtl number Pr=ν/κ. Here, β is the thermal expansion coefficient, g the gravitational acceleration, Δ the temperature difference between the bottom and top, and ν and κ the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate H is used in the form of the Rossby number Ro=(βgΔ/L)/(2H). The key question is: How does the heat transfer depend on rotation and the other two control parameters: Nu(Ra, Pr, Ro)? Here we will answer this question by giving a summary of our results presented in (Zhong et al., 2009; Stevens et al., 2009; Stevens et al., 2010).",
keywords = "Rayleigh number, Direct numerical simulation, Thermal boundary layer, Heat transfer enhancement, Rossby number",
author = "Stevens, {Richard J.A.M.} and Clercx, {Herman J.H.} and Detlef Lohse",
year = "2011",
doi = "10.1007/978-94-007-2482-2_57",
language = "English",
isbn = "978-94-007-2481-5",
series = "ERCOFTAC series",
publisher = "Springer",
pages = "359--364",
editor = "Hans Kuerten and Bernard Geurts and Vincenzo Armenio and Jochen Fr{\"o}hlich",
booktitle = "Direct and Large-Eddy Simulation VIII",

}

Stevens, RJAM, Clercx, HJH & Lohse, D 2011, Numerical simulations of rotating Rayleigh-Bénard convection. in H Kuerten, B Geurts, V Armenio & J Fröhlich (eds), Direct and Large-Eddy Simulation VIII. ERCOFTAC series, vol. 15, Springer, Dordrecht, pp. 359-364, 8th ERCOFTAC Workshop on Direct and Large-Eddy Simulation VIII 2010, Eindhoven, Netherlands, 7/07/10. https://doi.org/10.1007/978-94-007-2482-2_57

Numerical simulations of rotating Rayleigh-Bénard convection. / Stevens, Richard J.A.M.; Clercx, Herman J.H.; Lohse, Detlef.

Direct and Large-Eddy Simulation VIII. ed. / Hans Kuerten; Bernard Geurts; Vincenzo Armenio; Jochen Fröhlich. Dordrecht : Springer, 2011. p. 359-364 (ERCOFTAC series; Vol. 15).

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

TY - GEN

T1 - Numerical simulations of rotating Rayleigh-Bénard convection

AU - Stevens, Richard J.A.M.

AU - Clercx, Herman J.H.

AU - Lohse, Detlef

PY - 2011

Y1 - 2011

N2 - The Rayleigh-Bénard (RB) system is relevant to astro- and geophysical phenomena, including convection in the ocean, the Earth’s outer core, and the outer layer of the Sun. The dimensionless heat transfer (the Nusselt number Nu) in the system depends on the Rayleigh number Ra=βgΔL 3/(νκ) and the Prandtl number Pr=ν/κ. Here, β is the thermal expansion coefficient, g the gravitational acceleration, Δ the temperature difference between the bottom and top, and ν and κ the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate H is used in the form of the Rossby number Ro=(βgΔ/L)/(2H). The key question is: How does the heat transfer depend on rotation and the other two control parameters: Nu(Ra, Pr, Ro)? Here we will answer this question by giving a summary of our results presented in (Zhong et al., 2009; Stevens et al., 2009; Stevens et al., 2010).

AB - The Rayleigh-Bénard (RB) system is relevant to astro- and geophysical phenomena, including convection in the ocean, the Earth’s outer core, and the outer layer of the Sun. The dimensionless heat transfer (the Nusselt number Nu) in the system depends on the Rayleigh number Ra=βgΔL 3/(νκ) and the Prandtl number Pr=ν/κ. Here, β is the thermal expansion coefficient, g the gravitational acceleration, Δ the temperature difference between the bottom and top, and ν and κ the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate H is used in the form of the Rossby number Ro=(βgΔ/L)/(2H). The key question is: How does the heat transfer depend on rotation and the other two control parameters: Nu(Ra, Pr, Ro)? Here we will answer this question by giving a summary of our results presented in (Zhong et al., 2009; Stevens et al., 2009; Stevens et al., 2010).

KW - Rayleigh number

KW - Direct numerical simulation

KW - Thermal boundary layer

KW - Heat transfer enhancement

KW - Rossby number

U2 - 10.1007/978-94-007-2482-2_57

DO - 10.1007/978-94-007-2482-2_57

M3 - Conference contribution

SN - 978-94-007-2481-5

T3 - ERCOFTAC series

SP - 359

EP - 364

BT - Direct and Large-Eddy Simulation VIII

A2 - Kuerten, Hans

A2 - Geurts, Bernard

A2 - Armenio, Vincenzo

A2 - Fröhlich, Jochen

PB - Springer

CY - Dordrecht

ER -

Stevens RJAM, Clercx HJH, Lohse D. Numerical simulations of rotating Rayleigh-Bénard convection. In Kuerten H, Geurts B, Armenio V, Fröhlich J, editors, Direct and Large-Eddy Simulation VIII. Dordrecht: Springer. 2011. p. 359-364. (ERCOFTAC series). https://doi.org/10.1007/978-94-007-2482-2_57