Nu~Ra1/2 scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence

Xiaojue Zhu*, Richard J.A.M. Stevens, Olga Shishkina, Roberto Verzicco, Detlef Lohse

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

41 Citations (Scopus)
110 Downloads (Pure)


In turbulent Rayleigh-Bénard (RB) convection with regular, mono-scale, surface roughness, the scaling exponent in the relationship between the Nusselt number and the Rayleigh number , can be locally, provided that is large enough to ensure that the thermal boundary layer thickness is comparable to the roughness height. However, at even larger , becomes thin enough to follow the irregular surface and saturates back to the value for smooth walls (Zhu et al., Phys. Rev. Lett., vol. 119, 2017, 154501). In this paper, we prevent this saturation by employing multiscale roughness. We perform direct numerical simulations of two-dimensional RB convection using an immersed boundary method to capture the rough plates. We find that, for rough boundaries that contain three distinct length scales, a scaling exponent of can be sustained for at least three decades of . The physical reason is that the threshold at which the scaling exponent saturates back to the smooth wall value is pushed to larger , when the smaller roughness elements fully protrude through the thermal boundary layer. The multiscale roughness employed here may better resemble the irregular surfaces that are encountered in geophysical flows and in some industrial applications.

Original languageEnglish
Pages (from-to)R4
JournalJournal of fluid mechanics
Early online date23 Apr 2019
Publication statusPublished - 25 Jun 2019


  • UT-Hybrid-D
  • turbulent convection
  • Bénard convection

Cite this