Object Recognition from very few Training Examples for Enhancing Bicycle Maps

Christoph Reinders, Hanno Ackermann, Michael Ying Yang, Bodo Rosenhahn

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

13 Citations (Scopus)
108 Downloads (Pure)

Abstract

In recent years, data-driven methods have shown great success for extracting information about the infrastructure in urban areas. These algorithms are usually trained on large datasets consisting of thousands or millions of labeled training examples. While large datasets have been published regarding cars, for cyclists very few labeled data is available although appearance, point of view, and positioning of even relevant objects differ. Unfortunately, labeling data is costly and requires a huge amount of work. In this paper, we thus address the problem of learning with very few labels. The aim is to recognize particular traffic signs in crowdsourced data to collect information which is of interest to cyclists. We propose a system for object recognition that is trained with only 15 examples per class on average. To achieve this, we combine the advantages of convolutional neural networks and random forests to learn a patch-wise classifier. In the next step, we map the random forest to a neural network and transform the classifier to a fully convolutional network. Thereby, the processing of full images is significantly accelerated and bounding boxes can be predicted. Finally, we integrate data of the Global Positioning System (GPS) to localize the predictions on the map. In comparison to Faster R-CNN and other networks for object recognition or algorithms for transfer learning, we considerably reduce the required amount of labeled data. We demonstrate good performance on the recognition of traffic signs for cyclists as well as their localization in maps.
Original languageEnglish
Title of host publication2018 IEEE Intelligent Vehicles Symposium (IV)
PublisherIEEE
Pages860-867
Number of pages8
ISBN (Electronic)9781538644522
ISBN (Print)1931-0587
DOIs
Publication statusPublished - 22 Oct 2018
EventIEEE Intelligent Vehicles Symposium, IV 2018 - Changshu, China
Duration: 26 Jun 201830 Jun 2018

Publication series

NameIEEE Intelligent Vehicles Symposium, Proceedings
Volume2018-June

Conference

ConferenceIEEE Intelligent Vehicles Symposium, IV 2018
Abbreviated titleIV 2018
Country/TerritoryChina
CityChangshu
Period26/06/1830/06/18
OtherTogether with IV’18, the Chinese 10th Intelligent Vehicles Future Challenge (IVFC 2018, June 30-July 1, 2018) will be held at the Chinese flagship Intelligent Vehicle Proving Center (iVPC), Changshu, Suzhou, China

Keywords

  • 2021 OA procedure

Fingerprint

Dive into the research topics of 'Object Recognition from very few Training Examples for Enhancing Bicycle Maps'. Together they form a unique fingerprint.

Cite this