Observation and simulation of lake‐air heat and water transfer processes in a high‐altitude shallow lake on the Tibetan Plateau

Binbin Wang, Yaoming Ma, Xuelong Chen, Zhongbo Su, Massimo Menenti

Research output: Contribution to journalArticleAcademicpeer-review

48 Citations (Scopus)
241 Downloads (Pure)


Lakes are an important part of the landscape on the Tibetan Plateau. Most of the Plateau lakes' area has been expanding in recent years, but lake‐atmosphere energy and water interaction is poorly understood because of a lack of observational data and adequate modeling systems. Based on the eddy covariance observation over a high‐altitude shallow and small lake (the small Nam Co Lake) during an ice‐free period from 10 April to 30 August 2012, this study analyzes the lake‐air heat and water vapor turbulent transfer processes and evaluates two popular lake‐air exchange models: a bulk aerodynamic transfer model (B model) and a multilayer model (M model). Our main results are as follows: (1) observations show that the bulk transfer coefficient (CE) and roughness length (zoq) for water are higher than those for heat (CH and z0h), especially under low wind speed; (2) both models underestimate turbulent fluxes due to inaccurate values of the Charnock coefficient (α) and the roughness Reynolds number (Rr) which are both important parameters for calculating the roughness length for momentum (z0m) over water; (3) α within a reasonable range of 0.013–0.035 for rough flow and Rr for smooth flow (Rr = 0.11) are 0.031 and 0.54, respectively, by our observation. The wave pattern of shorter wavelength gives a larger z0m in the small and shallow lake; and (4) the B model and the M model gave consistent results, and both models are more suitable for simulation of turbulent flux exchange after z0m optimization.
Original languageEnglish
Pages (from-to)12327-12344
JournalJournal of geophysical research: Atmospheres
Issue number24
Publication statusPublished - 2015


  • METIS-316520


Dive into the research topics of 'Observation and simulation of lake‐air heat and water transfer processes in a high‐altitude shallow lake on the Tibetan Plateau'. Together they form a unique fingerprint.

Cite this