Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling

P. Christiaan Klink, Andre J. Noest, Vivian Holten, Albert V. van den Berg, Richard J.A. van Wezel

Research output: Contribution to journalArticleAcademicpeer-review

17 Citations (Scopus)
94 Downloads (Pure)


Local sensory information is often ambiguous forcing the brain to integrate spatiotemporally separated information for stable conscious perception. Lateral connections between clusters of similarly tuned neurons in the visual cortex are a potential neural substrate for the coupling of spatially separated visual information. Ecological optics suggests that perceptual coupling of visual information is particularly beneficial in occlusion situations. Here we present a novel neural network model and a series of human psychophysical experiments that can together explain the perceptual coupling of kinetic depth stimuli with activity-driven lateral information sharing in the far depth plane. Our most striking finding is the perceptual coupling of an ambiguous kinetic depth cylinder with a coaxially presented and disparity defined cylinder backside, while a similar frontside fails to evoke coupling. Altogether, our findings are consistent with the idea that clusters of similarly tuned far depth neurons share spatially separated motion information in order to resolve local perceptual ambiguities. The classification of far depth in the facilitation mechanism results from a combination of absolute and relative depth that suggests a functional role of these lateral connections in the perception of partially occluded objects.
Original languageEnglish
Article number20
Number of pages20
JournalJournal of vision
Issue number10
Publication statusPublished - 30 Sep 2009


  • amodal completion
  • Neural network
  • IR-71691
  • BSS-Neurotechnology and cellular engineering
  • lateral connections
  • spatial facilitation
  • EWI-17921
  • kinetic depth
  • ecological optics
  • rivalry
  • perceptual coupling


Dive into the research topics of 'Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling'. Together they form a unique fingerprint.

Cite this