Abstract
In this paper we provide a generalization of a Positivstellensatz by Pólya [Pólya in Naturforsch Ges Zürich 73:141–145 1928]. We show that if a homogeneous polynomial is positive over the intersection of the non-negative orthant and a given basic semialgebraic cone (excluding the origin), then there exists a “Pólya type‿ certificate for non-negativity. The proof of this result uses the original Positivstellensatz by Pólya, and a Positivstellensatz by Putinar and Vasilescu [Putinar and Vasilescu C R Acad Sci Ser I Math 328(7) 1999].
Original language | English |
---|---|
Pages (from-to) | 615-625 |
Number of pages | 11 |
Journal | Journal of global optimization |
Volume | 61 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2015 |
Keywords
- MSC-90C30
- MSC-11E25
- MSC-14P05
- MSC-14P10
- Non-negativity certificate
- IR-95419
- Polynomial optimization
- Positivstellensatz
- EWI-25767
- METIS-312506
- Semialgebraic set
- n/a OA procedure
Fingerprint
Dive into the research topics of 'On an extension of Pólya’s Positivstellensatz'. Together they form a unique fingerprint.Prizes
-
Top-5 Papers Published in Journal of Global Optimization in 2015
Dickinson, P. J. C. (Recipient) & Povh, J. (Recipient), 2016
Prize