TY - JOUR
T1 - On bubble clustering and energy spectra in pseudo-turbulence
AU - Martinez Mercado, J.
AU - Chehata Gomez, D.
AU - van Gils, Dennis Paulus Maria
AU - Sun, Chao
AU - Lohse, Detlef
PY - 2010
Y1 - 2010
N2 - Three-dimensional particle tracking velocimetry (PTV) and phase-sensitive constant temperature anemometry in pseudo-turbulence – i.e. flow solely driven by rising bubbles – were performed to investigate bubble clustering and to obtain the mean bubble rise velocity, distributions of bubble velocities and energy spectra at dilute gas concentrations (α ≤ 2.2 %). To characterize the clustering the pair correlation function G(r, θ) was calculated. The deformable bubbles with equivalent bubble diameter db = 4–5 mm were found to cluster within a radial distance of a few bubble radii with a preferred vertical orientation. This vertical alignment was present at both small and large scales. For small distances also some horizontal clustering was found. The large number of data points and the non-intrusiveness of PTV allowed well-converged probability density functions (PDFs) of the bubble velocity to be obtained. The PDFs had a non-Gaussian form for all velocity components and intermittency effects could be observed. The energy spectrum of the liquid velocity fluctuations decayed with a power law of −3.2, different from the ≈ −5/3 found for homogeneous isotropic turbulence, but close to the prediction −3 by Lance & Bataille (J. Fluid Mech., vol. 222, 1991, p. 95) for pseudo-turbulence
AB - Three-dimensional particle tracking velocimetry (PTV) and phase-sensitive constant temperature anemometry in pseudo-turbulence – i.e. flow solely driven by rising bubbles – were performed to investigate bubble clustering and to obtain the mean bubble rise velocity, distributions of bubble velocities and energy spectra at dilute gas concentrations (α ≤ 2.2 %). To characterize the clustering the pair correlation function G(r, θ) was calculated. The deformable bubbles with equivalent bubble diameter db = 4–5 mm were found to cluster within a radial distance of a few bubble radii with a preferred vertical orientation. This vertical alignment was present at both small and large scales. For small distances also some horizontal clustering was found. The large number of data points and the non-intrusiveness of PTV allowed well-converged probability density functions (PDFs) of the bubble velocity to be obtained. The PDFs had a non-Gaussian form for all velocity components and intermittency effects could be observed. The energy spectrum of the liquid velocity fluctuations decayed with a power law of −3.2, different from the ≈ −5/3 found for homogeneous isotropic turbulence, but close to the prediction −3 by Lance & Bataille (J. Fluid Mech., vol. 222, 1991, p. 95) for pseudo-turbulence
KW - METIS-266193
KW - IR-79266
U2 - 10.1017/S0022112009993570
DO - 10.1017/S0022112009993570
M3 - Article
SN - 0022-1120
VL - 650
SP - 287
EP - 306
JO - Journal of fluid mechanics
JF - Journal of fluid mechanics
ER -