On circuits and pancyclic line graphs

A. Benhocine, L. Clark, N. Köhler, H.J. Veldman

Research output: Contribution to journalArticleAcademic

32 Citations (Scopus)
287 Downloads (Pure)

Abstract

Clark proved that L(G) is hamiltonian if G is a connected graph of order n ≥ 6 such that deg u + deg v ≥ n - 1 - p(n) for every edge uv of G, where p(n) = 0 if n is even and p(n) = 1 if n is odd. Here it is shown that the bound n - 1 - p(n) can be decreased to (2n + 1)/3 if every bridge of G is incident with a vertex of degree 1, which is a necessary condition for hamiltonicity of L(G). Moreover, the conclusion that L(G) is hamiltonian can be strengthened to the conclusion that L(G) is pancyclic. Lesniak-Foster and Williamson proved that G contains a spanning closed trail if |V(G)| = n ≥ 6, δ(G) 2 and deg u + deg v ≥ n - 1 for every pair of nonadjacent vertices u and v. The bound n - 1 can be decreased to (2n + 3)/3 if G is connected and bridgeless, which is necessary for G to have a spanning closed trail.
Original languageUndefined
Pages (from-to)411-425
JournalJournal of graph theory
Volume10
Issue number3
DOIs
Publication statusPublished - 1986

Keywords

  • IR-70813

Cite this