On contact numbers in random rod packings

A. Wouterse, Stefan Luding, A.P. Philipse

Research output: Contribution to journalArticleAcademicpeer-review

109 Citations (Scopus)
281 Downloads (Pure)

Abstract

Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well with experiments on granular packings. Contact numbers are also compared to caging numbers calculated for sphero-cylinders with arbitrary aspect-ratio. The caging number for rods arrested by uncorrelated point contacts asymptotes towards <γ> = 9 at high aspect ratio, strikingly close to the experimental contact number <C> ≈ 9.8 for thin rods. These and other findings confirm that thin-rod packings are dominated by local arrest in the form of truly random neighbor cages. The ideal packing law derived for random rod–rod contacts, supplemented with a calculation for the average contact number, explains both absolute value and aspect-ratio dependence of the packing density of randomly oriented thin rods.
Original languageUndefined
Pages (from-to)169-177
Number of pages9
JournalGranular matter
Volume11
Issue number3
DOIs
Publication statusPublished - 2009

Keywords

  • METIS-260426
  • Random packings - Rods - Contact numbers - Spherocylinders - Computer simulations - Molecular dynamics
  • IR-80357

Cite this