On H∞ control for dead-time systems

    Research output: Contribution to journalArticleAcademicpeer-review

    140 Citations (Scopus)
    3 Downloads (Pure)

    Abstract

    A mixed sensitivity H∞ problem is solved for dead-time systems. It is shown that for a given bound on the H∞-norm causal stabilizing controllers exist that achieve this bound if and only if a related finite-dimensional Riccati equation has a solution with a certain nonsingularity property. In the case of zero time delay, the Riccati equation is a standard Riccati equation and the nonsingularity condition is that the solution be nonnegative definite. For nonzero time delay, the nonsingularity condition is more involved but still allows us to obtain controllers. All suboptimal controllers are parameterized, and the central controller is shown to be a feedback interconnection of a finite-dimensional system and a finite memory system, both of which can be implemented. Some H∞ problems are rewritten as pure rational H∞ problems using a Smith predictor parameterization of the controller
    Original languageEnglish
    Pages (from-to)272-285
    Number of pages14
    JournalIEEE transactions on automatic control
    Volume45
    Issue number2
    DOIs
    Publication statusPublished - 2000

    Keywords

    • Spectral factorization
    • Smith predictors
    • Dead-time systems
    • H∞ control
    • METIS-140525
    • Infinite-dimensional systems
    • Riccati equations
    • IR-29891
    • Delay Systems

    Fingerprint Dive into the research topics of 'On H∞ control for dead-time systems'. Together they form a unique fingerprint.

    Cite this