A graph is called supereulerian if it has a spanning closed trail. Let $G$ be a 2-edge-connected graph of order $n$ such that each minimal edge cut $E \subseteq E (G)$ with $|E| \le 3$ satisfies the property that each component of $G-E$ has order at least $(n-2)/5$. We prove that either $G$ is supereulerian or $G$ belongs to one of two classes of exceptional graphs. Our results slightly improve earlier results of Catlin and Li. Furthermore our main result implies the following strengthening of a theorem of Lai within the class of graphs with minimum degree $\delta\ge 4$: If $G$ is a 2-edge-connected graph of order $n$ with $\delta (G)\ge 4$ such that for every edge $xy\in E (G)$ , we have $\max \{d(x),d(y)\} \ge (n-7)/5$, then either $G$ is supereulerian or $G$ belongs to one of two classes of exceptional graphs. We show that the condition $\delta(G)\ge 4$ cannot be relaxed.
Original language | English |
---|
Place of Publication | Enschede |
---|
Publisher | University of Twente |
---|
Number of pages | 10 |
---|
Publication status | Published - 1999 |
---|
Name | Memorandum |
---|
Publisher | Department of Applied Mathematics, University of Twente |
---|
No. | 1507 |
---|
ISSN (Print) | 0169-2690 |
---|