On the effect of treating poly(acrylic acid) with argon and tetrafluoromethane plasmas: kinetics and degradation mechanism

Johannes G.A. Terlingen, Gijsbert A.J. Takens, Frederik J. van der Gaag, Allan S. Hoffman, Jan Feijen

Research output: Contribution to journalArticleAcademicpeer-review

30 Citations (Scopus)
83 Downloads (Pure)

Abstract

Poly(acrylic acid) (PAAc) films were treated with either an argon or a tetrafluoromethane (CF4) plasma and subsequently analyzed with X-ray photoelectron spectroscopy (XPS). PAAc films were decarboxylated during both types of plasma treatments. In addition, during the CF4 plasma treatment, the PAAc films became fluorinated. The plasma phase during the argon plasma treatment of PAAc films was investigated with optical emission spectroscopy. It was shown that during this plasma treatment carbon dioxide, water, and possibly hydrogen were liberated from the PAAc surface. By covering the surface of PAAc films with different materials (lithium fluoride, UV fused silica, and glass) during the plasma treatment, it was possible to differentiate between photochemically induced and particle-induced changes of the surface. This method was used to show that decarboxylation during the argon plasma treatment was caused by vacuum UV radiation (wavelength < 150 nm) and the decarboxylation/fluorination during the CF4 plasma treatment was induced by reactive fluorine-containing species from the plasma phase. Furthermore, during both processes, etching of the PAAc surface occurred. Based on these mechanisms, kinetic models were derived that could be used to describe the measured kinetic data adequately.
Original languageEnglish
Pages (from-to)39-53
JournalJournal of applied polymer science
Volume1994
Issue number52
DOIs
Publication statusPublished - 1994

Keywords

  • METIS-105301
  • IR-71132

Fingerprint Dive into the research topics of 'On the effect of treating poly(acrylic acid) with argon and tetrafluoromethane plasmas: kinetics and degradation mechanism'. Together they form a unique fingerprint.

  • Cite this