TY - JOUR
T1 - On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes
AU - Elshof, M. G.
AU - de Vos, W. M.
AU - de Grooth, J.
AU - Benes, N. E.
N1 - Elsevier deal
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Long-term pH stability is critical for nanofiltration membranes in many applications, e.g. dairy and mining industry. We present a systematic study on the long-term pH stability of four different polyelectrolyte multilayer (PEM) nanofiltration membranes. The stability was assessed by comparing their performance before and after exposure to up to 1 M HNO3 (~pH 0) and 1 M NaOH (~pH 14), in terms of pure water permeance (PWP), salt retention, and molecular weight cut-off (MWCO). Poly(diallyldimethylammonium chloride) (PDADMAC)/poly(styrenesulfonate) (PSS) nanofiltration membranes show excellent stability under extreme acidic and basic conditions for more than 2 months (10.7 L m−2h−1bar−1 PWP, 95.5% MgSO4 retention, 279 g mol−1 MWCO), attributed to the use of strong polyelectrolytes, of which the charge is unaffected by pH. Poly(allylamine hydrochloride) (PAH)/PSS membranes show stable performance when exposed to extreme acidic conditions (9.7 L m−2h−1bar−1 PWP, 97.5% MgSO4 retention, 249 g mol−1 MWCO). Under these conditions, PAH remains charged and therefore a stable multilayer is maintained. PDADMAC/poly(acrylic acid) (PAA) and PAH/PAA membranes are not stable at extreme pH conditions. These results highlight that PEM nanofiltration membranes, especially PDADMAC/PSS membranes, have tremendous potential for use at extreme pH conditions. Compared to most commercially available membranes they have superior long-term stability and very relevant performance.
AB - Long-term pH stability is critical for nanofiltration membranes in many applications, e.g. dairy and mining industry. We present a systematic study on the long-term pH stability of four different polyelectrolyte multilayer (PEM) nanofiltration membranes. The stability was assessed by comparing their performance before and after exposure to up to 1 M HNO3 (~pH 0) and 1 M NaOH (~pH 14), in terms of pure water permeance (PWP), salt retention, and molecular weight cut-off (MWCO). Poly(diallyldimethylammonium chloride) (PDADMAC)/poly(styrenesulfonate) (PSS) nanofiltration membranes show excellent stability under extreme acidic and basic conditions for more than 2 months (10.7 L m−2h−1bar−1 PWP, 95.5% MgSO4 retention, 279 g mol−1 MWCO), attributed to the use of strong polyelectrolytes, of which the charge is unaffected by pH. Poly(allylamine hydrochloride) (PAH)/PSS membranes show stable performance when exposed to extreme acidic conditions (9.7 L m−2h−1bar−1 PWP, 97.5% MgSO4 retention, 249 g mol−1 MWCO). Under these conditions, PAH remains charged and therefore a stable multilayer is maintained. PDADMAC/poly(acrylic acid) (PAA) and PAH/PAA membranes are not stable at extreme pH conditions. These results highlight that PEM nanofiltration membranes, especially PDADMAC/PSS membranes, have tremendous potential for use at extreme pH conditions. Compared to most commercially available membranes they have superior long-term stability and very relevant performance.
KW - UT-Hybrid-D
KW - pH stable
KW - Polyelectrolyte multilayer
KW - Nanofiltration membrane
UR - http://www.scopus.com/inward/record.url?scp=85089364373&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2020.118532
DO - 10.1016/j.memsci.2020.118532
M3 - Article
AN - SCOPUS:85089364373
SN - 0376-7388
VL - 615
JO - Journal of membrane science
JF - Journal of membrane science
M1 - 118532
ER -