### Abstract

We consider the Erlang loss system, characterized by $N$ servers, Poisson arrivals and exponential service times, and allow the arrival rate to be a function of $N.$ We discuss representations and bounds for the rate of convergence to stationarity of the number of customers in the system, and display some bounds for the total variation distance between the time-dependent and stationary distributions. We also pay attention to time-dependent rates.

Original language | Undefined |
---|---|

Place of Publication | Enschede |

Publisher | University of Twente, Department of Applied Mathematics |

Number of pages | 16 |

Publication status | Published - Jul 2009 |

### Publication series

Name | Memorandum / Department of Applied Mathematics |
---|---|

Publisher | University of Twente, Department of Applied Mathematics |

No. | 1901 |

ISSN (Print) | 1874-4850 |

ISSN (Electronic) | 1874-4850 |

### Keywords

- MSC-60K25
- MSC-90B22
- METIS-263919
- IR-67521
- Charlier polynomials
- Rate of convergence
- Total variation distance
- EWI-15695

## Cite this

van Doorn, E. A., & Zeifman, A. I. (2009).

*On the speed of convergence to stationarity of the Erlang loss system*. (Memorandum / Department of Applied Mathematics; No. 1901). Enschede: University of Twente, Department of Applied Mathematics.