On the Supercapacitive Behaviour of Anodic Porous WO3-Based Negative Electrodes

K.K. Upadhyay, M. Altomare*, S. Eugénio, P. Schmuki, T.M. Silva, M.F. Montemor

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

59 Citations (Scopus)

Abstract

Herein we illustrate the functionality as pseudocapacitive material of tungsten trioxide (WO3) nanochannel layers fabricated by electrochemical anodization of W metal in pure hot ortho-phosphoric acid (o-H3PO4). These layers are characterized by a defined nanochannel morphology and show remarkable pseudocapacitive behaviour in the negative potential (−0.8–0.5 V) in neutral aqueous electrolyte (1 M Na2SO4). The maximum volumetric capacitance of 397 F cm−3 is obtained at 2 A cm−3. The WO3 nanochannel layers display full capacitance retention (up to 114%) after 3500 charge-discharge cycles performed at 10 A cm−3. The relatively high capacitance and retention ability are attributed to the high surface area provided by the regular and defined nanochannel morphology. Kinetic analysis of the electrochemical results for the best performing WO3 structures, i.e., grown by 2 h-long anodization, reveals the occurrence of pseudocapacitance and diffusional controlled processes. Electrochemical impedance spectroscopy measurements show for the same structures a relatively low electrical resistance, which is the plausible cause for the superior electrochemical behaviour compared to the other structures.
Original languageEnglish
Pages (from-to)192-201
JournalElectrochimica acta
Volume232
DOIs
Publication statusPublished - 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'On the Supercapacitive Behaviour of Anodic Porous WO3-Based Negative Electrodes'. Together they form a unique fingerprint.

Cite this